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Abstract

The present dissertation was developed within the scope of “Systems with Empathy for

the Human Nature”, i.e. systems that explain individual human behaviour along with

its peculiarities rather than reflecting aggregated group data. This thesis, in particular,

focuses on the phenomenon of unreliable user feedback (human uncertainty) in the

context of recommendation and personalisation.

At the beginning, the concept of measurement uncertainty is used to render human

uncertainty measurable and to analyse its impact on the comparative assessment of

predictive systems. The findings reveal a difficulty to distinguish between systems

regarding a given accuracy metric. Furthermore, human uncertainty is shown to induce

an offset on such metrics, which limits the detection of improvements. This furnishes the

need for a mathematical model of unreliable decision-making, feasible test procedures

for significant system distinction, and a user model to plausibly explain the present

phenomenon. To this end, concepts of statistics will be combined with those of metrology

and theoretical neuroscience. Using human uncertainty as an example, it is illustrated

how systems with empathy for the human nature can be designed.

The knowledge gained in this dissertation comprises a technical and an epistemolog-

ical component. On the one hand, a specific characteristic of human decision-making is

investigated and its origin is discussed against the background of a possible model of

cognition. On the other hand, a mathematical framework is developed to analyse and

implement this phenomenon for future systems of predictive data mining. This possibly

paves the way for a new perspective within a currently prominent research direction.
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1 | Introduction

1.1 Preliminary Settings and Terminology . . . . . . . . . . . . . 1

1.2 Motivation and Choice of Topic . . . . . . . . . . . . . . . . . 4

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Fields of Study, Methods, and Contributions . . . . . . . . . 15

The purpose of this chapter is to introduce the topic of this thesis, to motivate

its research questions and to demonstrate its relevance for related fields of research.

Some parts of this chapter are mainly based on my work Jasberg and Sizov (2019).

In particular, Sec. 1.2, 1.3 and 1.4 have been published almost verbatim there. The

motivating example has also been published in my contributions Jasberg and Sizov

(2017b), Jasberg and Sizov (2017c), and Jasberg and Sizov (2018a). However, all these

sections underwent small content-related modifications such as the underlying storyline

or the addition of another research goal (i.e. research goal D).

1.1 Preliminary Settings and Terminology

This thesis’ contribution is related to the field of predictive data mining which is a

sub-field of applied computer science. Predictive data mining can be defined as the

“search for very strong patterns in big data that can generalize to accurate future

decisions.” (Weiss and Indurkhya, 1998, p. 1). In other words, predictive data mining

is about searching the right data within records that is suitable for predicting future

events by generalising from the past. Such algorithms are employed in a multitude of

technologies nowadays, e.g. fraud detection, (online) marketing, healthcare outcomes,

and investment analysis (cf. Weiss and Indurkhya, 1998, p. 7).

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic operation principle of recommender systems

A prominent exponent of predictive data mining is the branch of so-called recom-

mender systems. These are “software tools and techniques providing suggestions for

items to be of use to a user” (Ricci et al., 2010, p. 1). The wide range of possible appli-

cations for these systems comprise entertainment, content personalisation, e-commerce

and service which can be regarded as the most common use cases (cf. Ricci et al., 2010,

p. 14). Utilisation in entertainment thereby comprises recommendations for films or

music while content personalisation comprises recommendations for documents, web

pages, news, and e-mail filters (cf. Ricci et al., 2010, p. 14). E-commerce makes use

of automated recommendations for purchasable products such as electronic devices,

books, clothes and many more while service recommendations are often related to travel

services, the suggestion of appropriate consultant experts or matchmaking services (cf.

Ricci et al., 2010, p. 14).

The basic operation principle of a recommender system is illustrated in Fig. 1.1.

Each recommender system is dependent on user interactions for its proper working

and its adaptation to individual preferences and behaviour. Such user interactions are

commonly divided into either explicit feedback or implicit feedback (cf. Ricci et al.,

2010, p. 2). Whilst explicit feedback is entered directly by a user himself, implicit

feedback is inferred from interactions with an online interface (cf. Ricci et al., 2010,

p. 2). Explicit feedback is usually collected by requiring a user’s personal opinion using

2



1.1. PRELIMINARY SETTINGS AND TERMINOLOGY

a scale (e.g. numeric or binary) in an online questionnaire (cf. Ricci et al., 2010, p. 9).

Typical examples of implicit feedback are user actions such as displaying additional

information on items, adding items to a wish list, or entering search queries (cf. Ricci

et al., 2010, pp. 9–10). All this information is then stored into the so-called user model.

Therefore, a user model can be defined as the entirety of stored user data that encodes

a user’s preferences and needs (cf. Ricci et al., 2010, pp. 8–9). Quite often it may just

be “a simple list containing the ratings provided by the user for some items” (Ricci

et al., 2010, p. 8). This user model can be augmented by additional data such as

inferred “mood, weather as well as other people’s votes” (Yang et al., 2012, p. 1) to rule

out biases. Jannach et al. point out that “although the existence of a user model is

central to every recommender system, the way in which this information is acquired

and exploited depends on the particular recommendation technique” (Jannach et al.,

2010, p. 2). In other words, most recommendations arise from intricate algorithms of

(modern) machine learning that are capable of learning a person’s preferences based on

manifold database entries concerning past user behaviour. These recognised patterns

are then transferred to new and unseen items to obtain an estimate of a user’s degree

of preference in advance. These techniques usually provide for each user an individual

list of items that are sorted by the inferred item preference. The top n of this list is

recommended to a user whose reaction then provides additional feedback to refine the

underlying user model and hence to improve further recommendations.

According to the automated evaluation of contemporary research contributions

conducted by Enríquez et al. (2019), current efforts of system improvement strongly

focus solely on the optimisation of machine learning techniques. In doing so, the

“majority of the published empirical evaluations of recommender systems [...] has

focused on the evaluation of a recommender system’s accuracy” (Herlocker et al., 2004,

p. 19), i.e. the degree of matching between prediction and real user feedback. The rise of

accuracy-driven evaluations has also led to criticism which is comprehensively described

in Ch. 2. In parallel, a smaller branch of research focused on the user model’s data

quality. Koren and Sill describe that “different users tend to have different internal scales”

(Koren and Sill, 2011, p. 117) and therefore, the validity of so-gathered information is

questionable. The same holds true for implicit feedback as well since “mapping the user

actions into a numerical scale [...] would be somewhat arbitrary" (Koren and Sill, 2011,

p. 117). However, the validity concerns regarding user models and related problems

(described in more detail in Ch. 2) had no discernible effect on the scientific mainstream

3



CHAPTER 1. INTRODUCTION

as the results by Enríquez et al. (2019) demonstrated. This thesis is supposed to

describe further investigations related to the data quality of user models, particularly

on reliability (instead of validity or objectiveness) and its impact on the frequently

pursued accuracy optimisation. All these investigations will be carried out in the light

of recommender systems, but the results of this thesis are likely to apply for the entire

field of predictive data mining because explicit (and implicit) human-generated data

is more or less ubiquitous for other use cases as well. For the rest of this thesis, the

common terminology of recommender systems research will be used as introduced, for

example, in Ricci et al. (2010); Jannach et al. (2010); Herlocker et al. (2004).

1.2 Motivation and Choice of Topic

The quality of data is an important topic for empirical sciences and initial research has

already been done for predictive data mining as well. In contrast to the research of Koren

and Sill (2011) elaborating on questions of validity, this thesis is dedicated to reliability

concerns. Reliability in terms of recommender systems means that user feedback is

not constant and therefore not absolutely credible but subject to a certain degree of

uncertainty. This section is supposed to motivate the relevance of this phenomenon

for the field of recommender systems. For example, the question arises whether a

deviation from predicted feedback is due to inadequate system operation or due to

lacking reliability, meaning that the system is actually working quite well. Having

this question in mind, one can start to question existing efforts to determine values of

accuracy and rankings that are built upon these comparative evaluations.

As a motivating example, it is referred to an initial pilot study conducted by Sizov

(2017b) to investigate unreliable user feedback. As a motivating example, an initial pilot

study will be presented which was conducted by Sizov (2017b) to investigate unreliable

user feedback. In this study, 110 participants were shown 220 photos of well-known

places and famous attractions (e.g. the Leaning Tower of Pisa) which were supposed to

be rated on the usual 5-star scale. However, one photo was not shown once but five

times in total and has thus been rated repeatedly. The main result of Sizov (2017b) is

that a virtual community of users can be described in total (globally), but the same

system is then again unable to describe individual user behaviour (locally):
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1.2. MOTIVATION AND CHOICE OF TOPIC
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Figure 1.2: Pilot study from Sizov (2017b): Repeated ratings of photos with N = 550

participants reveal the existence and extent of unreliable feedback for the same picture.

“In other words, the considerable fraction of users exhibits some (unfitting)

behaviour that contradicts the [global] model. [...] Consequently, it would

not be correct to claim that such a model provides a reasonable ‘explanation’

of the individual user behaviour in the population.” (Sizov, 2017b, p. 870)

This result is substantial for two reasons: (1) It implicitly questions accuracy-driven

evaluations in which prediction quality is usually measured for an entire community

at once and (2) it demands a new perspective of system design in which users are

to be understood individually (i.e. local explanation) rather than within a virtual

community (i.e. global explanation). These results implicitly support the research of

McNee et al. who find that those “recommendations that are most accurate according

to the standard metrics are sometimes not the recommendations that are most useful to

5



CHAPTER 1. INTRODUCTION

users” (McNee et al., 2006, p. 1097). Therefore, further research about data quality in

user models – and reliability in particular – is mandatory as it challenges contemporary

methods of research and might lead to proposals for future system design to ensure that

recommender systems will fulfil their actual purpose even better than before.

In contrast to former contributions related to this phenomenon (cf. Ch. 2), Sizov

(2017b) was the first to describe and illustrate the lack of reliability explicitly and in a

discrete way. From Fig. 1.2 it can be seen that only 16% of all participants had used

the same response category to rate the photography in all five rating repetitions. This

basically means that only four of twenty-five users give constant ratings. Just over

50%, on the other hand, utilised two different response categories for five ratings, so

they changed their mind once. Moreover, 25% - a quarter - of all users have even used

three categories and thus changed their opinion twice. Against this background, the

argument that users are sufficiently understood when a system is highly accurate may

need to be reconsidered. For example, let the predictor for a particular user-item pair

be π = 2 stars given on the usual 5-star scale. Let this user rate the corresponding

item five times, assigning the ratings {4, 2, 2, 4, 4} stars. Such a scenario of utilising

two response categories is very likely according to Fig. 1.2. Can the predictor π = 2

stars be considered to be false, or can it be considered to be correct, or is it 3/5 = 60%

false and 2/5 = 40% correct? More importantly, how to quantify the difference between

this predictor and the real rating? And finally, how to calculate the overall prediction

quality of a whole system under these conditions?

To elaborate on these questions, a separate experiment was planned and conducted.

In this experiment, 67 users were required to rate video trailers on a 5-star scale. Five

of these trailers have been presented five times in total with certain temporal gaps and

other rating tasks in between. A comprehensive description and detailed analysis can

be found in Ch. 3. The first idea for possible effects of lacking reliability on the global

prediction accuracy is obtained by a simple simulative analysis. To this end, three

sample recommender systems are defined by determining their predictors:

RS 1 π1
u,i := mean of all ratings for the u-i-pair (1.1)

RS 2 π2
u,i := 3 const. (1.2)

RS 3 π3
u,i := first given rating for the u-i-pair (1.3)

The rationale behind these definitions is as follows: The first recommender system is

a statistical one and accounts for each rating trial. Moreover, it will be revealed in

6



1.2. MOTIVATION AND CHOICE OF TOPIC

forthcoming chapters that this is also the best recommender possible when a special

accuracy metric is considered. The second recommender system does not account for

any given rating at all and provides a constant prediction to each user-item pair instead.

The choice for constantly predicting three stars (instead of any other possible star

rating) is motivated by the work of Sizov (2017a). The author proves π = 3 to be a good

choice for a constant recommendation as it “shows better performance than at least

one User-User comparison” (Sizov, 2017a, p. 892), i.e. a constant three-star prediction

outperforms a setting in which users serve as recommenders for themselves. The third

recommender system is an example of such a “User-User comparison” as mentioned by

Sizov (2017a). The predictor is defined as the first user rating to a specific item since

this reflects the current reality of rating scenarios, i.e. a user rates each item only once

and without further re-evaluations. For each of these recommender systems k = 1, 2, 3

all N = 335 user-item pairs are used to compute the root mean squared error

RMSE(k, t) :=

√
1

N

∑
u,i

(
rtu,i − πk

u,i

)2
(1.4)

as a commonly used accuracy metric for each rating trial t = 1, . . . , 5 where rtu,i denotes

the t-th rating from user u given to item i. This results in five possible RMSE outcomes

for each recommender system. A histogram of these scores is shown in Fig. 1.3a. It can

be recognised that those RMSE scores scatter significantly which is most evident for

RS 3 since it can produce both, the best or even the worst prediction accuracy. Having

five scores for three recommender systems, one yields 53 = 125 possible combinations to

form a ranking of these systems. In Fig. 1.3b the factual rankings are shown together

with their absolute and relative frequencies. At this point, it is clear that the uncertainty

of explicit user feedback propagates when computing accuracy metrics. Accordingly,

taking the lack of reliability into account, there is no longer an absolutely valid ranking,

but each possible ranking is subject to a particular probability for being drawn in a

single trial. This inevitably changes the perspective one should have on explicit user

feedback and its interpretation. As seen in this first example, reliability concerns -

which are always inherent in explicit user feedback - tackle the statistical soundness

of system evaluation. This alone motivates the effort of a better understanding of this

propagation process.

In the following sections, other issues will also be highlighted that need to be

considered when analysing unreliable user feedback, e.g. biasing effects on accuracy

7



CHAPTER 1. INTRODUCTION

(a) histogram of RMSE scores for each system and each repetition trial

(b) possible rankings based upon all RMSE score combinations

Figure 1.3: Impact of human uncertainty on the reliability of prediction accuracy

8



1.3. RESEARCH OBJECTIVES

metrics as well as natural offsets which are limiting the detection of prediction quality for

well-working systems. All these consequences could potentially support misjudgements

in comparative evaluations. These can hardly be solved with big data, meaning the

collection of even more explicit user feedback, since new data will also come along with

missing reliability. In this light, what are the essential implications for real use cases?

1. Someone could opt for a supposedly better system, whose superiority is just due

to uncertainty that comes along with reliability issues.

2. Someone is investing financial and human resources in the further improvement of

a system, although a statistically sound detection of improvements is not possible

anymore.

3. The magnitude of improvement is misjudged because the uncertainty has a different

bias for small metric scores than for larger scores. On this basis, competitions

in which a reference system must be outperformed by a certain threshold may

possibly need further consideration.

4. Problems are ignored due to the assumption that soliciting explicit user feedback

to obtain big data would solve these issues, which is only partially true.

These phenomena justify a sound investigation of lacking reliability in explicit user

feedback and motivate a well-developed theory of comparative assessment when reliability

concerns are involved. For the rest of this dissertation, the phenomenon of lacking

reliability of user feedback will be denoted as human uncertainty. This term reflects,

on the one hand, the concept that is employed to operationalise reliability, namely

the concept of measurement uncertainty as it is introduced by JCGM (2008a) and

thoroughly described in Ch. 2. On the other hand, it also describes the presumed

human origin of this phenomenon and hence reflects that all findings are likely to apply

whenever explicit user feedback is considered within the field of predictive data mining.

1.3 Research Objectives

The essence of this thesis is to add a new dimension to given structures in the field

of predictive data mining and to provide indications that digital footprints (i.e. the

information that human beings inevitably provide by using modern technology) should

9
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not always be considered as absolutely credible. Consequently, current tendencies in

predictive data mining, i.e. aiming for the highest accuracy and collecting more and

more explicit user feedback (big data) can only lead to real innovations when it comes

along with a well-considered analysis of its inherent uncertainty. For this purpose,

subgoals and research questions (RQ) are defined which will be worked off gradually in

this thesis:

Subgoal A: Revealing that uncertainty actually exists in a concrete rating scenario

with items that are closer to reality than photos.

RQ A1: How can uncertainty in explicit user feedback be modelled?

RQ A2: How can uncertainty information be effectively measured?

Subgoal B: Demonstrating what happens if uncertainty is not considered, especially

when determining the prediction accuracy of multiple systems.

RQ B1: What could a model for the propagation of uncertain user feedback look
like when computing accuracy metrics?

RQ B2: What characterises the propagation of uncertainty, i.e. are there any
amplifying or weakening effects or confounding variables?

RQ B3: What impact does uncertainty propagation have on the comparative
evaluation of prediction accuracies?

Subgoal C: Convincingly introducing methodological basics and analysis approaches

for dealing with uncertainty in order to turn this phenomenon to good account.

RQ C1: What are current solutions and what are they able to enhance?

RQ C2: How can human uncertainty be used to create recommendation benefits?

By pursuing the previously mentioned subgoals, it became apparent that human

uncertainty is indeed an additional dimension of system design and evaluation that should

not be neglected. For this reason, a thorough knowledge of human uncertainty is certainly

relevant to evaluate these impacts beforehand. In other words, it is most imperative

to predict human uncertainty for future events and a multitude of circumstantial

dependencies (e.g. fatigue, stress, mood, etc.). Predicting human uncertainty for each

user-item pair might support further (strategic) decisions, e.g. to sort a list of possible
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recommendations by the best predictor along with the least uncertainty, to only present

recommendations whose anticipated uncertainty does not exceed a certain threshold, or

to explicitly present these items of high uncertainty in order to evoke surprise in some

users. The multitude of additional opportunities constitutes the need for a new user

model that is capable of representing human uncertainty as well as passing the relevant

information on to common machine learning techniques. Moreover, each event of a

random process as well as the extent of scattering itself has an informative value. In

theory, this information might also serve to improve recommendation rather than just

raising doubts. For this purpose, the decision was made to employ a cognitive model

from the field of theoretical neuroscience. The rationale behind this decision is that

human uncertainty is likely to originate from a cognitive process and can, therefore, best

be described by a corresponding theory. Such a theory also holds the advantage that it

might provide additional information about the human cognition process which can be

used for recommendation. Moreover, a neuroscientific user model could be expanded

more easily by many influencing factors such as fatigue and stress. Neurological concepts

in conventionalised form have already proven to be fruitful in the past, e.g. (recurrent)

artificial neural networks, deep learning (cf. Savage, 2019, p. 16) or hierarchical temporal

memory (HTM) models (cf. Ahmad et al., 2017, p. 1).

During the research of subgoal A, certain doubts arose as to whether the applied

measurement procedures indeed measure an existing phenomenon or simply produce it

themselves. In other words, the validity of both measurement procedures introduced in

Ch. 3 is not fully evident. On the one hand, the repeated rating of items confronts the

user with a continuously changing environment as the presentation of preceding items is

always different. This could result in different situational biases distorting an otherwise

constant user rating. The second measurement approach, on the other hand, requires a

user’s belief about the adequateness of each possible user rating. This could represent

a leading question for it suggests that different weightings of simultaneous response

categories are mandatory. At first, this does not seem to be a problem after all. Even if

human uncertainty was induced by exposing a user to contextual changes, one has still to

clarify which of these contexts is the right one for a proper evaluation of recommendation

quality. The uncertainty about this individual context and its corresponding bias then

again justifies the utilisation of a probability density. This perspective implies that

the entire feedback distribution can be reinterpreted in a way that different situations

lead to different biases and that the evaluation of recommendation quality is carried
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out across any of these possible contexts. The problem about this reasoning is the

underlying assumption that user feedback consists of a true and constant opinion plus

a constant but context-dependent bias. This assumption entails that by capturing a

user’s context, one can straighten out the corresponding bias and obtain a true and

constant opinion. Considering any other context than this would be obsolete because

the true opinion is already known. One simply has to find the dependencies between

context and related bias. This issue is currently tackled by a variety of research as

described in more detail in Yang et al. (2012).

The essential core of this dissertation thesis is, however, that user feedback has

nothing like a true value but is (to a certain degree) random by nature. Although there

is currently not enough evidence to reject one of these opposing hypotheses in favour of

the other, the neurological user model of Ch. 6 provides several indications to support

the probabilistic assumption instead of a true constant value plus bias. Therefore, the

development of a neurological user model not only results in novel ideas of system

design but also serves to provide initial indications for uncertainty to be a natural

human characteristic. This in return supports the hypothesis of human uncertainty to

be present in most databases containing implicit or explicit user feedback. In the light

of all these points, it appears necessary to define another subgoal:

Subgoal D: Discovering a neurological user model to predict uncertainty and to

substantiate the possibility for a human-inherent origin.

RQ D1: What does a possible cognition model look like that naturally explains
human uncertainty?

RQ D2: To what extent can such a model be considered as biologically plausible?

RQ D3: What are the benefits of this user model in particular and what are the
benefits of this novel paradigm in general?

In brief, subgoal D provides additional support to the previous subgoals as it demon-

strates that human uncertainty is very likely to be existent in any database containing

implicit or explicit user feedback. Furthermore, this subgoal can be used to derive

proposals on how systems may be designed in the near future so that they explain

individual user behaviour even better than before.
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1.4 Outline of this Thesis

The goals of this thesis are closely interwoven with its structure and a supplementary

illustration can be found in Fig. 1.4. In the last sections of this introduction, the

interdisciplinary nature of this thesis will be described along with its applied methodology

and possible contributions to certain fields of study.

The related work is actually split into two distinct parts in order to improve

readability. The first part in Ch. 2 is concerned with measuring and modelling uncertainty

and how it should be handled. The second part in Ch. 6.2 focuses on (computational)

neuroscience and its potentials to support a new perspective of system design. Both

parts will be preceded to those chapters introducing the relevant research conducted in

this dissertation project.

The scientific and technical main core of this work refers to subgoal A to C whilst

each subgoal has its chapter dedicated. In Ch. 3, the subgoal A will be addressed and

evidence will be given to prove the existence of uncertainty in a concrete rating scenario

with realistic items. To this end, a stochastic model of human uncertainty will be defined

which is based on the theory of measurement error from metrology and physics. This

model is chosen because it already constitutes a well-established conjunction of lacking

reliability and the uncertainty about a quantity of interest which is operationalised and

represented by probability distributions. Moreover, this model provides some explicit

hints to possible approaches for the measurement of uncertainty which will be further

elaborated through a comparative analysis.

After substantiating the existence of human uncertainty by using these measurement

techniques, the impact of uncertain data on prediction accuracy will be elaborated

in Ch. 4. For this purpose, an additional concept from physics and metrology will

be employed which has been developed to analyse the propagation of uncertain data

through a computational model. This concept will be applied to a common prediction

accuracy metric in order to derive viable estimations and to investigate the dependence on

confounding variables. After reporting on potential issues induced by human uncertainty,

possible solutions will be discussed in Ch. 5. Here, new proposals will also be made to

obtain benefits from uncertain user feedback.

After all these elaborations, it makes sense to examine the origin of human uncertainty

more closely and to take a closer look at the potential cognitive process in order to

propose a user model for uncertainty representation. This research, as it is presented
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Figure 1.4: Graphical representation of the organisation of this thesis
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in Ch. 6, should not be understood as a second technical core of this thesis but rather

as (1) a proposal for new system design concepts and (2) a very first initial research

substantiating previous findings. For this reason, the associated analyses have not been

divided into distinct chapters in order to symbolise its subordinate position within the

big picture. This initial research idea involves another related work in which the utilised

model of behavioural variability is motivated. Afterwards, the basics and the operating

principle of this model will be clarified and potential connections to uncertain user

feedback will be drawn. The technical implementation of this model and the realisation

of its learning phase (model fitting) will constitute a large part of this chapter. Finally,

it will be examined whether this cognition model (fitted on real human data) leads to

implications which are in concordance to biological or medical literature. The conclusion

of this chapter is formed by an analysis of a possible connection between this cognitive

model and the field of predictive data mining.

In Ch. 7 the results of this thesis will be recapitulated and all subgoals will be

brought together in a concluding discussion. Although this thesis focuses solely on

human uncertainty as one example of human peculiarities, the results will serve to draw

conclusions for the interpretation of user data in general. In particular, conclusions

are drawn with respect to the demand of Sizov (2017b) for systems that explain and

describe users as individuals with all their human characteristics. What such systems

might look like and how they are integrated into standard concepts of machine learning

can be deduced from the neurological analysis. The final chapter of this thesis will

elaborate on the scientific impact of this dissertation. Finally, additional and novel

ideas will be raised to describe further research.

1.5 Fields of Study, Methods, and Contributions

Despite its interdisciplinary nature, this thesis is supposed to be understood mainly as a

contribution to information science. The interdisciplinarity, in particular, is constituted

by the transfer of methods from other fields of research that are not naturally inherent

to information science. Those are in particular:

applied computer science: The example of recommender systems was borrowed

from this field of research as a representative for predictive data mining. This

also applies to the current methodology for the (comparative) assessment of such
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systems via accuracy metrics as revealed by Enríquez et al. (2019) and thoroughly

described by Herlocker et al. (2004). Many evaluations within this area rely on

user experiments. Especially, the measurement of human uncertainty via repeated

ratings (Ch. 3) has been carried out before by Amatriain et al. (2009b). To

fully account for human uncertainty and to make this information available to

recommender systems, a new user model is designed in Ch. 6. User model design

is also part of recommender system research as previously described. In this thesis,

suitable user models will be assessed in Ch. 6 in terms of A/B testing as it has

been advocated in the industry for years (cf. Kohavi and Thomke, 2017). For

this purpose, various machine learning techniques, which are currently studied

in applied computer science (cf. Enríquez et al., 2019, p. 12), will be fitted with

these user models and their performance will then be evaluated.

mathematics and statistics: Mathematics (and statistics in particular) serves as an

ancillary science. From this wide field, descriptive methods, as well as inductive

methods, are employed. The last ones include hypothesis tests (i.e. KS-test,

Welch’s t-test, Levene’s test) to compare differently obtained distributions (Ch. 3).

Those distributions rely on discrete measurement data and sufficient statistics for

distributions from the parametric family are hence estimated using the maximum

likelihood method. The impact of human uncertainty on metrics of recommen-

dation accuracy will be addressed in Ch. 4 by using convolutions of probability

density functions. Respective approximations will be yielded using the method of

Taylor expansion as described in Ku (1966).

metrology and physics: Metrology is the science of accurate measurement whose

methods are often applied in physics (and engineering as well). According to

the Joint Committee for Guides in Metrology, there are basically two types of

evaluation (cf. JCGM, 2008a, p. 7) which are thoroughly introduced in Ch. 2.

Both types will be used in Ch. 3 to develop instruments of measuring human

uncertainty in an online rating scenario. One key element of this dissertation is

the representation of lacking response reliability (human uncertainty) through

probability densities. This key idea also stems from metrology concepts (cf. JCGM,

2008a, p. 6). The explicit choice of distributions is guided by the maximum entropy

principle as proposed by metrology (cf. JCGM, 2008c, pp. 18–20). For the case

considered in this thesis, this principle points to the utilisation of Gaussians as
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they serve to represent the discrete drawings whilst assuming the least unknown

additional information. Using Gaussians also allows to simplify the convolutions

regarded in Ch. 4 by using the method of Gaussian Error Propagation (cf. Ku,

1966, pp. 265–267). To further simplify mathematical derivations of Ch. 4 and to

enable investigations in the absence of analytical solutions respectively (Ch. 6),

Monte-Carlo simulations will be employed. These simulations are also proposed

by the Joint Committee for Guides in Metrology (cf. JCGM, 2008c, pp. 27–32).

computational neuroscience: The core of computational neuroscience can be de-

scribed as “the application of mathematics and systems theory to the analysis of

neural systems and, reversely, the application of neural procedures to the solution

of technical problems” (Mallot, 2013, p. v). The first part is done in Ch. 6 by

connecting the theory of probabilistic population codes from the field of neuro-

science to the phenomenon of human uncertainty from the field of recommender

systems. The theory of probabilistic population codes is suitable for this kind

of connection as it assumes behaviour to be represented by probability densities

just as it is discovered for user feedback in Ch. 3. This connection is additionally

made plausible by an analysis of the biological implications of such a fusion. The

second part, i.e. the application of neural1 procedures to the representation of

human uncertainty is done by mapping user behaviour to neuronal2 features that

in return constitute a user model for recommendation purposes.

Findings revealed by applying these above-mentioned methods will be interpreted

mainly in the light of information science. Possible conclusions for other fields of study

are only briefly mentioned within the main body of this thesis, but they are described

in detail in terms of further research (Ch. 7). This dissertation makes a contribution to

the field of information science by

1. revealing insights about the limited credibility of knowledge that is gained about

people on the basis of their interactions with digital systems,

2. evaluating current developments in the field of predictive data mining on a

meta-level, especially the predominant role of accuracy-driven research and the

subordinated role of user models and their representation of human characteristics,

1The term ‘neural’ refers to characteristics of the (central) nervous system in general.
2The term ‘neuronal’ refers to characteristics of a particular a neuron.
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3. proposing a new perspective of future system design with the goal to further

sensitise predictive data mining to human beings, i.e. to better explain individual

user behaviour and to stronger account for human characteristics.

The third point suggests that this work is part of a larger series of research which is

following a special credo: Systems of predictive data mining should seek to further

understand human beings through their individual psyche, the neurological foundations

of behaviour, emotional states, and life circumstances. The rationale behind this claim

is given by the fact that “appropriate interpretation of collective feedback requires the

development of suitable models that summarize and ‘explain’ observations” (Sizov,

2017b, p. 869). It is exactly this ‘explaining’ which, according to Sizov (2017b), has

moved away from truly understanding human beings and therefore needs to be redefined.

This criticism is expressed qua

“Model components and parameters are often interpreted as an ‘expla-

nation’ of observations. From this perspective, users form groups with

homogeneous behaviour, individuals of each group are characterized by the

corresponding distribution [...]. Unfortunately, it is technically possible

to construct models that are simple, fit well with summary (macro-level)

aggregated data, but do not appropriately fit the individual (micro-level)

behaviour of individual users.” (Sizov, 2017b, p. 869)

This criticism alludes to the results of Enríquez et al. (2019) which show that contempo-

rary research is accuracy-driven as well as mainly technical, meaning that the majority

of contributions address the issue of solely improving machine learning techniques. In

doing so, the explanation of individual users becomes nothing more than finding optimal

weights of a machine learning model which is tuned to community behaviour – the

individual moves into the background and can no longer be explained. This conclusion

has been substantiated by hypothesis tests revealing that a “considerable fraction of

users exhibits some (unfitting) behaviour that contradicts the [tuned] model” (Sizov,

2017b, p. 870). In other words: Current efforts in predictive data mining to mainly

optimising machine learning techniques in an accuracy-driven fashion may possibly not

possess enough explicative power to understand individual human beings. One possible

solution might be the following:

“Our work was motivated by the intention to make statistical models

more ‘human-like’, i.e. better describing individual human behaviour [...].
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Experimental evaluations have shown that our methodology allows for

constructing user behaviour explanations that go beyond established mixture

models.” (Sizov, 2017b, pp. 875–876)

This demand for human-like systems has motivated the focus of this dissertation.

This thesis shows how such systems can be designed, namely by reinterpreting the

knowledge about users against human characteristics (here: missing reliability of user

feedback) and by transferring neural theories of cognition and mind into the user model

itself. However, the majority of publications within the field of predictive data mining

and recommendation is presenting evidence that their systems work well for (very) large

amounts of users. In the course of this thesis, it is exactly this label of “well-working”

that will be reviewed and questioned against the phenomenon of human uncertainty. In

this sense, this debate is not simply about two scientific streams with different definitions

of ‘explaining users’. Rather, possible shortcomings and chances for misinterpretation

will be revealed for the accuracy-driven recommender research insofar individual human

behaviour is not considered appropriately. Of course, human beings are much more

multifaceted and it can not be claimed that the mere consideration of human uncertainty

leads to absolutely human systems, nor that it makes the call for more human-like

systems obsolete. Rather, this dissertation can be seen as a starting point for a new

paradigm amid established methods.
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The purpose of this chapter is to introduce the different branches of research which

are related to this thesis. In doing so, a preliminary description of research fundamentals

will be given together with the respective terminology. This will lay the foundation to

describe the current state-of-the-art within each research branch which will finally allow

for the exact positioning of this thesis’ contribution, i.e. commonalities, differences and

amendments. This chapter has not yet been published in its current form.

2.1 Predictive Data Mining and Recommendation

This thesis is mainly related to the field of predictive data mining, a sub-field of applied

computer science. Weiss and Indurkhya define (predictive) data mining as follows:

“Data Mining is the search for valuable information in large volumes of

data. It is a cooperative effort of humans and computers. Humans design

databases, describe problems and set goals. Computers sift through data,

looking for patterns that match these goals. Predictive data mining is a

search for very strong patterns in big data that can generalize to accurate

future decisions.” (Weiss and Indurkhya, 1998, p. 1)

In easy terms, data mining is the process of searching the right data to solve a predefined

problem or to fulfil a predefined goal. According to Weiss and Indurkhya, those problems
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and goals respectively can be addressed by either knowledge discovery (decision-support)

or prediction (decision-making) (cf. Weiss and Indurkhya, 1998, p. 7). It is the latter

type of data mining that aims to gather the right information to predict future outcomes

and is referred to as predictive data mining. Typical applications of predictive data

mining are fraud detection, (online) marketing, healthcare outcomes, and investment

analysis (cf. Weiss and Indurkhya, 1998, p. 7). To fulfil its goal, algorithms of predictive

data mining aim to solve related problems “by looking at past experience with known

answers, and then projecting to new cases” (Weiss and Indurkhya, 1998, pp. 7–8).

One special application of predictive data mining is the development of so-called

recommender systems. Ricci et al. define these systems as follows:

“Recommender Systems [...] are software tools and techniques providing

suggestions for items to be of use to a user [...]. The suggestions relate to

various decision-making processes, such as what items to buy, what music

to listen to, or what online news to read.” (Ricci et al., 2010, p. 1)

Examples of possible items that are usually recommended to users are news, web pages,

books, CDs, movies, electronic devices, but also insurance policies, financial investments,

travels and jobs (cf. Ricci et al., 2010, p. 8). In general, such systems perform data

mining across data of past human behaviour that is reflecting personal preferences.

According to Jannach et al., the choice of data as well as its representation is denoted

as the underlying user model (cf. Jannach et al., 2010, p. 1).

The author additionally points out that “although the existence of a user model is

central to every recommender system, the way in which this information is acquired and

exploited depends on the particular recommendation technique” (Jannach et al., 2010,

p. 2). In other words, there is a variety of recommender systems that do not only differ

by the algorithm itself but also by the underlying user model, i.e. the data collection

on which the system performs its learning task. Such a user model can be “a simple

list containing the ratings provided by the user for some items” (Ricci et al., 2010, p. 8)

and/or “sociodemographic attributes such as age, gender, profession, and education”

(Ricci et al., 2010, p. 8). Another degree of freedom that has already been mentioned is

the method of augmenting the data collection according to the chosen user model:

“[Recommender systems] collect from users their preferences, which are

either explicitly expressed, e.g., as ratings for products, or are inferred
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by interpreting user actions. For instance, a [recommender system] may

consider the navigation to a particular product page as an implicit sign of

preference for the items shown on that page.” (Ricci et al., 2010, p. 2)

According to this description, explicit feedback about an item is defined as being directly

entered by the user himself. This is typically done by transferring the personal opinion

onto a scale utilised in an online questionnaire (cf. Ricci et al., 2010, p. 9). Two popular

scales are the numerical scale (e.g. ‘1’ to ‘5’ stars as used by Amazon or the Google

Playstore) and the binary scale (e.g. ‘like’ or ‘dislike’ as used on Tinder). Implicit

user feedback consists of preference information that is inferred by a user’s action, e.g.

displaying additional information to an item, adding items to a wish list, or entering

search queries (cf. Ricci et al., 2010, pp. 9–10).

As mentioned before, recommender systems do also differ by the employed algorithm.

Qualitatively, there are a few ideas of algorithm design. Two design concepts that can

be found in standard textbooks are the content-based filtering and the collaborative

filtering respectively. Both methods can be described as follows:

“At its core, content-based recommendation is based on the availability

of (manually created or automatically extracted) item descriptions and a

profile that assigns importance to these characteristics. If we think [...] of

[a] bookstore [...], the possible characteristics of books might include the

genre, the specific topic, or the author.” (Jannach et al., 2010, p. 4)

“The basic idea of [collaborative filtering] is that if users shared the same

interests in the past [...] they will also have similar tastes in the future, so,

if, for example, user A and user B have a purchase history that overlaps

strongly and user A has recently bought a book that B has not yet seen,

the basic rationale is to propose this book also to B.” (Jannach et al., 2010,

pp. 2–3)

According to Ricci et al., collaborative filtering can be seen to be the most popular

concept for recommender system design (cf. Ricci et al., 2010, p. 12). The research about

recommender systems is yet still prospering due to their relevance for the economy, e.g.

increasing sales number, selling more diverse items, increasing user satisfaction and user

fidelity (cf. Ricci et al., 2010, p. 5). In order to describe the current state-of-the-art,
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Enríquez et al. analysed 1195 papers resulting in 80 primary studies. The main results

in terms of technical novelty are

“that the most studied technique in recommendation systems is recom-

mendation with the use of collaborative filters, closely followed by those that

use content-based filters. Only 14 used hybrid recommendation systems,

whereas 31 used collaborative filtering and 29 used content-based methods.”

(Enríquez et al., 2019, p. 14)

Furthermore, “the most researched [innovations] correspond to naive Bayes, SVM vectors,

and neuronal [sic!] networks, representing almost 55% of the techniques used for this

purpose” (Enríquez et al., 2019, p. 14). This study thus indicates that contemporary

research is focusing on traditional algorithm designs and seeks to further improve

techniques from the 1960s. The authors further reveal:

“Although many of the proposals present a validation, few of them use

real data sources instead of synthetic ones (artificially generated rather than

generated by real-world events) to carry out their experiments. In this sense,

a lack of technology transfer of these proposals to real case studies has been

detected.” (Enríquez et al., 2019, p. 14)

“[Current research projects] respond to the design and implementation

phase but are far from offering solutions in earlier stages such as requirements

and analysis. This makes it very difficult to find efficient and effective

solutions that support real business needs from an early stage.” (Enríquez

et al., 2019, p. 14)

“Finally, we can accomplish that even having executed this rigorous

study, there is still a big difficulty in deciding about which algorithm is

better than another depending on the context in which it is used.” (Enríquez

et al., 2019, p. 15)

In short terms, actual efforts strongly focus on technical considerations, optimising

well-known algorithms within artificial environments. On the other side, the current

state-of-the-art is lacking an explicit elaboration for real-world applicability, which the

authors acknowledge as a potential for future work.
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This potential is covered by this thesis for its contribution questions possible issues

related to the utilisation of real human data. In particular, special attention is given to

data quality and its impact on predictive algorithms and related systems. Questioning

the quality of data is indeed a topic of interest and not entirely new within this branch of

research. For instance, although numerical scales are frequently used to collect explicit

feedback, the validity of so-gathered information is questionable:

“When user feedback is related to absolute numbers, taking the scores as

numerical may not reflect the user intentions well. Different users tend to

have different internal scales. For example, taking star ratings as numeric

will put the same distance between ‘3 stars’ and both ‘4 stars’ and ‘2 stars’.

However, one user can take ‘3 stars’ as similar to ‘4 stars’, while another

user strongly relates ‘3 stars’ to low quality, being similar to ‘1-2 stars’.”

(Koren and Sill, 2011, p. 117)

But also for implicit feedback, such validity questions can be raised since user actions

are quite often internally encoded by numerical scales as well:

“For example, a user can search and browse a product page, which is

a weak indication of interest in the product. A stronger indication would

be bookmarking the product or adding it to a ‘wish list’. An even stronger

indication would be entering the product to the ‘shopping cart’ or bidding

on the product. The strongest indication would be actually purchasing the

product. [...] Yet, mapping the user actions into a numerical scale would

not be natural or trivial. Any decision to map the actions into a numerical

scale, e.g. coding ‘search and browse’ as a 1, bookmarking or wish-listing as

2, etc., would be somewhat arbitrary.” (Koren and Sill, 2011, p. 117)

It can be seen that the debate about the effects of real human data has been held

in 2011 and that it had no major effect on the current state-of-the-art according to

Enríquez et al. (2019). It can thus be assumed that such issues might not be perceived

as relevant by a certain majority or that such ideas do not propagate rigorously enough

to demonstrate a long life period. Since recommender systems are intended to be

applied in real-world scenarios, they are supposed to deal with realistic data created by

human beings. For this reason, the question of the effects of human-generated data and

especially its quality criteria is quite relevant.
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From predictive data mining, the example of recommender systems is adopted along

with the comparative assessment through accuracy metrics. However, this thesis will not

focus on the techniques of machine learning themselves but on the underlying user model

and its data quality. While Koren and Sill (2011) focus on the validity, i.e. whether the

data indeed reflects the user’s true intention, it is the additional quality criterion of

reliability that is in the scope of this present thesis. For this purpose, the first part of this

thesis (Ch. 3 to 5) is dedicated to measuring reliability and discussing its impact on the

comparative assessment of recommender systems. The second part of this thesis (Ch. 6)

is dedicated to the development of a new user model that operationalises reliability

and serves to deduce proposals for future system design. This will be exemplified by

using the above-mentioned collaborative filtering approaches as this is the most common

technique for recommendation (cf. Ricci et al., 2010, p. 12). The results of this thesis

are exemplified with recommender systems but also serve as indications to question

similar issues for the broader field of predictive data mining.

2.2 Validation Methods in Predictive Data Mining

As described above, research on predictive data mining – and recommender systems

in particular – mainly relies on the optimisation of existing algorithms of machine

learning. A comprehensive introduction of existing approaches is given in Bishop (2006)

as well as in Manning et al. (2008) and Kubat (2015). A comprehensive guide to system

validation and comparative assessment in the field of predictive data mining can be

found in Herlocker et al. (2004) and Bobadilla et al. (2013). According to Herlocker

et al., the task of identifying the best predictive algorithm is rather difficult and a

variety of related metrics have been developed for this purpose (cf. Herlocker et al.,

2004, p. 6). By 2004, however, the “majority of the published empirical evaluations of

recommender systems [...] has focused on the evaluation of a recommender system’s

accuracy” (Herlocker et al., 2004, p. 19). This practise has been maintained to this day

so that accuracy metrics are still considered as “the most commonly used metrics by

recommender systems” (Rawat and Dwivedi, 2019, p. 17). This reported supremacy is

also in line with other recent publications (cf. Heinrich et al., 2019, p. 2). In general,

“an accuracy metric empirically measures how close a [...] predicted

ranking of items for a user differs from the user’s true ranking of preference.
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Accuracy measures may also measure how well a system can predict an

exact rating value for a specific item.” (Herlocker et al., 2004, p. 19)

Typical measures of accuracy, according to Herlocker et al., are precision and recall, the

mean average error (MAE), the mean squared error (MSE) and the root mean squared

error (RMSE) (cf. Herlocker et al., 2004, pp. 20–23). Especially the RMSE plays a

prominent role after it was used in the Netflix Prize in 2009 (cf. Netflix Inc., nd). It

will therefore be employed as the accuracy metric for the considerations in Ch. 4.

Although accuracy has become the most frequently used attribute for recommen-

dation quality, it only evaluates a small fraction of applicable perspectives. Based on

the above-given definition, accuracy does not measure other important attributes like

diversity, i.e. to what extent a user gets offered songs from other artists rather than

from one and the same. Accuracy does also not measure a user’s surprise about a novel

and unknown item, nor does it measure a user’s satisfaction (which might be present

even if a rating does not match its model-based prediction). This is the reason for

some sort of scepticism that has built against the exclusive use of accuracy metrics. For

example, McNee et al. (2006) claims that

“the recommendations that are most accurate according to the standard

metrics are sometimes not the recommendations that are most useful to

users.” (McNee et al., 2006, p. 1097)

The author’s main criticism about accuracy-driven evaluation is the range of conse-

quences of not considering all the above-mentioned attributes that accuracy does not

account for. Neglection of diversity can, for example, lead to blindness towards so-called

similarity holes, i.e. “only giving exceptionally similar recommendations (e.g. once a

user rated one Star Trek movie she would only receive recommendations for more

Star Trek movies)” (McNee et al., 2006, p. 1098). To tackle this issue, Ziegler et al.

(2005) introduced an intra-list similarity metric that is sensitive to topic diversification.

Users were given a list of recommendations which could be altered in the extent of

item diversity. The results demonstrated, that the users preferred lists with increased

diversity despite their worse accuracy compared to less diverse lists (cf. Ziegler et al.,

2005, pp. 28–30). Another often neglected attribute is serendipity, i.e. “the experience

of receiving an unexpected and fortuitous item recommendation” (McNee et al., 2006,

p. 1099). The authors argue that users often prefer “recommendations that are for

items they would not have thought of themselves” (McNee et al., 2006, p. 1099). The

27



CHAPTER 2. RELATED WORK

last attribute that has already been mentioned is user satisfaction. It has been shown

that user satisfaction does not always correlate with high recommender accuracy (cf.

Ziegler et al., 2005, pp. 28–30) and that explaining user satisfaction cannot be reduced

to accuracy considerations (cf. Knijnenburg et al., 2012, p. 443). This is so far only

the criticism related to what accuracy metrics do not account for. In addition, the

informative value of accuracy itself is questionable:

“How large a difference does there have to be in the value of a metric

for a statistically significant difference to exist? Complete answers to

these questions have not yet been substantially addressed in the published

literature.” (Herlocker et al., 2004, p. 19)

Here, statistical significance indicates the authors’ belief in reliability issues.

With this thesis, the argumentation presented above is extended by the additional

aspect of human response reliability. In particular, we follow Herlocker’s idea and

thoroughly investigate the impact of lacking reliability on accuracy metrics in Ch. 4

and provide instruments for distinguishing systems with statistical significance. The

contribution of this thesis thus provides further evidence against the isolated use of

accuracy metrics. However, while other authors investigate shortcomings of neglecting

further dimensions of validation (i.e. similarity holes, serendipity, satisfaction), this thesis

questions the credibility of accuracy itself due to lacking reliability of user-generated

data. Although the specific methodology introduced in this thesis is exemplified by

using the RMSE, the main results can easily be adapted for alternative assessment

metrics without substantial loss of generality, insofar they require for (uncertain) human

input. This has been demonstrated by Zhang et al. (2018), who applied the reliability

analysis of Sec. 4.1 to the accuracy metric MAE and obtained similar results.

2.3 Human Uncertainty in Recommender Systems

The first reported discovery of reliability issues for user feedback was done by Hill et al.

(1995) through an experiment to evaluate the power of collaborative filtering. A total

of 291 users participated through an automated e-mail interface and each of them was

given a list with 500 films to rate on a numeric 1-to-10-scale (Hill et al., 1995, pp. 197,

28



2.3. HUMAN UNCERTAINTY IN RECOMMENDER SYSTEMS

199). In order to estimate the limitations of the recommendation results, the authors

considered data reliability:

“Six weeks after they initially [participated], 100 early users were asked

to re-rate exactly the same list of movie titles as they had rated the first

time. 22 volunteers replied with a second set of ratings.” (Hill et al., 1995,

p. 199)

The authors found that the Pearson correlation between these two rating trials was 0.83

(cf. Hill et al., 1995, p. 199) and concluded that

“since a person’s rating is noisy (i.e., has a random component in addition

to their more underlying true feeling about the movie), it will never be

possible to predict their rating perfectly.” (Hill et al., 1995, p. 200)

This supports the hypothesis from above that also the reliability of data constituting

the underlying user model has an impact on a recommender system. On this foundation,

Xavier Amatriain initiated research in this direction and coined the term “natural

noise” (Amatriain et al., 2009b, p. 173). This term comprises the same phenomenon of

unreliable user ratings as already introduced, but it further reflects the concept that user

ratings consist of a true feeling plus an additional random component (i.e. superimposed

noise). The authors operationalised the phenomenon by using a psychometric test-

retest-reliability in the form of a noise-to-signal-ratio (cf. Amatriain et al., 2009a, p. 249).

The experimental setup scheduled three distinct rating trials in which 118 users had

to provide ratings for 100 movie titles from the Netflix Prize on a 1-to-5-star scale

using a web interface (cf. Amatriain et al., 2009a, pp. 249–250). The second rating trial

has been carried out 24 hours after the first trial and the third rating trial has been

carried out 15 days after the second trial (cf. Amatriain et al., 2009a, pp. 249–250). The

noise-to-signal ratio has been found to be 0.924 (cf. Amatriain et al., 2009a, p. 252) and

the author confirmed that “any value over 0.9 is usually considered ‘good’ in classical test

theory” (Amatriain et al., 2009a, p. 252). This is in concordance with the observation

of Hill et al. (1995) and reveals that existent deviations are relatively small. These

small deviations nonetheless hold great potential to negatively affect recommendation:

Using a sample recommender system, “the calculated RMSE between different trials

ranged between 0.557 and 0.8156 [sic!]” (Amatriain et al., 2009a, p. 257), depending

on the specific rating trial. The authors interpreted the lower bound as the empirical
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minimum for this specific recommender system which is then impaired by natural

noise (cf. Amatriain et al., 2009a, p. 257). To solve this issue, Amatriain et al. (2009b)

introduced a de-noising algorithm which replaces repeated ratings with large deviation

by artificial ratings with smaller deviation. The authors achieved an improvement above

14% compared to the original RMSE (cf. Amatriain et al., 2009b, p. 180). Another

strategy of coping with user noise is proposed by Koren and Sill (2011). The authors

associate model-based predictions with artificial noise so that they better resemble noisy

feedback. This strategy has been implemented in a recommender system that performed

better than its reference on standard data records. A more detailed analysis of these

proposed solutions can be found in Ch. 5.

One remarkable interpretation of Amatriain et al. is that the lowest value gained

from considering the RMSE for each rating trial constitutes an empirical lower bound

for the respective recommender system (cf. Amatriain et al., 2009a, p. 253). The idea

for an absolute limit of prediction accuracy was also initially discussed by Hill et al.

(1995) but has not been in the main scope of the respective paper. The assumption of

such a limitation has later been mentioned once again:

“Though the new algorithms often appear to do better than the older

algorithms they are compared to, we find that when each algorithm is tuned

to its optimum, they all produce similar measures of quality. We – and

others – have speculated that we may be reaching some ‘magic barrier’

where natural variability may prevent us from getting much more accurate.”

(Herlocker et al., 2004, p. 6)

The essence of this magic barrier seems to be that the comparative evaluation of best-

performing recommender systems becomes obsolete when reaching a certain value of

accuracy, i.e. there is only an equivalence class of optimal systems left where no sensible

rankings can be performed. Said et al. assumed that every improvement beyond this

barrier might indicate over-fitting rather than better performance (cf. Said et al., 2012,

p. 238). This reflects the importance of being able to estimate this magic barrier. A

theoretical framework for this purpose has been introduced by Said et al. (2012) using

an empirical risk minimisation principle. In doing so, Said et al. found that the magic

barrier – in the case of the RMSE – constitutes as the square root of the average variance

in user responses (cf. Said et al., 2012, p. 243). The peculiarity of this work is that it

was the first time that a theoretical framework had been developed to model natural
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noise (i.e. unreliable user responses) in recommender systems whilst other authors like

Amatriain et al. (2009a) kept on working phenomenologically.

In further progress, the authors exploited this magic barrier to enhance recommen-

dation in terms of accuracy (Said and Bellogín, 2018). Their idea is to compute a

user’s coherency within an attribute space (e.g. a film genre). For example, a coherent

user would rate all horror films equally whilst an incoherent user would demonstrate

more fluctuations throughout this genre. In the course of this, Said and Bellogín (2018)

conducted an online experiment with 308 users providing ratings to 2329 items in two

distinct rating trials. It was found

“that user coherence is correlated with the magic barrier; we exploit this

correlation to discriminate between easy users (those with a lower magic

barrier) and difficult ones (those with a higher magic barrier).” (Said and

Bellogín, 2018, p. 97)

“[that] this experiment confirms that it is possible [...] to build different

training (and test) models in such a way that the error decreases for the

easy users, i.e., to increase the accuracy of the recommender system.” (Said

and Bellogín, 2018, p. 117)

Indeed, the authors were able to show that the RMSE can be improved by 10 to 40%,

depending on the number of difficult users in the training set (cf. Said and Bellogín,

2018, p. 121). This result points to a practical advantage as it allows for “cheaper

recommendation cycles (in terms of computational effort, time, and parameter tuning)

for easier users” (Said and Bellogín, 2018, pp. 120–121), which might be a large fraction

within usual data records according to the reliability measurements from above.

In this thesis, we also address the missing reliability of user responses and its impact

on recommender systems. We also address the measurement of reliability as well as

its numerical representation by appropriate metrics. One of the major differences

between this thesis and preceding research is the perspective of doing so. Hill et al.

described the underlying phenomenon by a quantity of psychometrics and test theory

(cf. Hill et al., 1995, p. 199) while Amatriain et al. used a noise-to-signal ratio from

electrical communication engineering (cf. Amatriain et al., 2009a, p. 249). This thesis

will describe yet another access to this phenomenon which is based on the theory
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of measurement uncertainty as proposed by metrology and physics. This concept is

thoroughly introduced in the next section. Its essence is to regard measurable quantities

such as user feedback as a distribution which comprises a central tendency together

with its uncertainty. One advantage of this approach is the potential to investigate

reliability issues for each user-item pair rather than the aggregation of hundreds of

uncertain ratings as it was done in Hill et al. (1995) and Amatriain et al. (2009a). This

in-depth information might be key to a deeper understanding of this phenomenon.

To separate this novel perspective terminologically from the other perspectives

(i.e. psychometrics and electrical communication theory) it will henceforth be referred

to as human uncertainty. This term reflects both, the application of the concept of

measurement uncertainty as well as the assumption about a human origin of this

phenomenon. The phenomenon itself – namely the missing reliability in user feedback

and the assumption of an inherent random component – is exactly the same throughout

all of these three different terminologies. Simply put, the terminological variation does

not refer to the phenomenon itself but to the perspective that is applied to it.

The second difference to preceding research is the measurement approach. Hill et al.

(1995) collected two ratings per item with a temporal gap of six weeks while Amatriain

et al. (2009a) collected three ratings with a temporal gap of 24 hours for the second and

additional 15 days for the third rating trial. Although the measurement described in

Ch. 3 also relies on repeated ratings, the temporal gap between each trial is significantly

shorter while the number of trials is higher. The rationale behind this course of action

is to reduce the chance of substantial changes in a user’s external conditions (time of

day, weather, etc.) or a user’s internal states (emotions such as joy or anger, fatigue,

stress, health). Otherwise one could always argue that uncertainty is just another

manifestation of environmental biases. In this light, it has been found that “ratings

are always irrational, because they may be affected by many unpredictable factors like

mood, weather and other people’s votes” (Yang et al., 2012, p. 1). Detecting human

uncertainty in a setting of constant internal and external conditions would prove that

user feedback indeed contains a random component rather than just different (constant)

biases corresponding to environmental changes. This in turn would support an important

hypothesis, namely that missing reliability is indeed a human characteristic which is

always present whenever a particular rating is done. A pointer to this hypothesis is

given by a second measurement procedure (cf. Ch. 3) which collects all information

about a feedback distribution in one single rating trial only.
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The third difference can be found within the analysis of accuracy exemplified by

the RMSE. Amatriain et al. further examined possible impacts of missing reliability on

recommender accuracy and found that

“although the reliability of the survey as an instrument and the stability

of user opinions are high, inconsistencies negatively impact the quality of the

predictions that would be given by a [recommender system].” (Amatriain

et al., 2009a, p. 257)

The authors substantiate this claim by the fact that the RMSE values changed for each

of the three rating trials. This conclusion is based on the assumption that different

ratings within the learning set influence the underlying machine learning algorithm. This

in return would lead to better or worse recommendation quality. From a metrologist

point of view, the scattering of RMSE values do not necessarily indicate an impact

on the machine learning technique but rather indicate the propagation of uncertain

user ratings while computing the RMSE. The explicit difference can be understood

by considering the comparison function within the RMSE formula, i.e. Δν := rν − πν

where rν ∈ R is the rating for user-item pair ν = (u, i) and πν ∈ R is the model-based

prediction. In this notation, ν is a multi-index that aggregates the user id u and item id

i for the purpose of abbreviation. The conclusion of uncertainty affecting model-based

predictions would imply that πν is a random variable with realisations in R. However,

the formation of this random variable and its related density function on the basis of

uncertain user feedback is still unknown. By contrast, metrology naturally regards the

measured input quantity as being uncertain. Hence, rν (instead of πν) is considered to

be a random variable whose density can be obtained by measurement. This also leads

to an uncertainty propagation with regard to Δν and the RMSE. This propagation is

elaborated in Ch. 4. The legitimation of the metrologist perspective is given by our

initial experiment in which recommender systems have been built by simply defining

constant predictors. Accordingly, those predictors have not been generated by machine

learning on the basis of different rating trials. Nonetheless, the computation of RMSE

scores for each rating trial resulted in scattering as revealed by Amatriain et al. (2009a).

In simple terms, the main difference is that preceding research assumed a negative

impact on recommendation quality itself while the metrologist perspective just assumes

an uncertainty with which recommendation quality can be detected. Certainly, both

perspectives have their specific raison d’être and this thesis does not aim to falsify the
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other point of view. This thesis rather aims to introduce this novel perspective and to

discover a phenomenon (along with its impact) in a different light than before.

Using the metrologist approach, the uncertainty propagation for the RMSE can

explicitly be derived in a closed mathematical formulation as to see in Sec. 4.1. The

RMSE hence takes the form of a probability density itself and has to be seen as a

generalisation of those findings reported by Amatriain et al. (2009a). This finally allows

to answer an important question concerning the comparative assessment given two

different recommender systems:

“How large a difference does there have to be in the value of a metric

for a statistically significant difference to exist? Complete answers to

these questions have not yet been substantially addressed in the published

literature.” (Herlocker et al., 2004, p. 19)

When both metrics are represented by probability densities, these might overlap for

small differences between their respective location parameters. As a result, each ranking

in terms of order relation is subject to a certain degree of error that can be expressed by

probability. This error probability of comparative assessments is derived and exemplified

by the revaluation of the Netflix Price competition in Sec. 4.3.

This metrologic concept is also capable of deriving the magic barrier exactly as it

is introduced in Said et al. (2012). Moreover, its derivation in Sec. 4.4 proves to be a

generalisation of the preceding work: Said et al. (2012) introduced the magic barrier as

a sharp boundary while it is demonstrated in Sec. 4.4 that the magic barrier must also

be represented by a probability density. This basically means that the magic barrier

might be lower or higher than initially presumed and that its exceeding can only be

expressed in terms of probability.

2.4 Uncertainty Concepts in Metrology

The Bureau International des Poids et Mesures (engl. International Bureau of Weights

and Measures) defines metrology as “the science of measurement, embracing both

experimental and theoretical determinations at any level of uncertainty in any field of

science, and technology” (BIPM, 2004). Traditionally, the concepts of metrology are

applied in physics, engineering, astronomy, and other experimental sciences. However,

they might apply for predictive data mining a well. The collection of user feedback
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can certainly be understood as a “process of experimentally obtaining one or more [...]

values that can reasonably be attributed to a quantity” (JCGM, 2008b, p. 16) which is

exactly the BIPM definition of measurement for which these particular concepts have

been designed for. Moreover, the credibility issues addressed by metrology have already

been found to be present in underlying user models as well:

measurement accuracy according to the BIPM denotes the “closeness of agreement

between a measured quantity value and a true quantity value of a measurand”

(JCGM, 2008b, p. 21). This quality criterion matches the discovery of so-called

biases as introduced above and neatly summarised by Yang et al. (2012). Such a

bias, in the light of recommender systems, denotes a systematic shift of a user’s

true opinion triggered by a particular environmental factor, e.g. weather bias,

social bias and many more.

measurement precision according to the BIPM denotes the “closeness of agreement

between indications or measured quantity values obtained by replicate measure-

ments on the same or similar objects under specified conditions” (JCGM, 2008b,

p. 22). This quality criterion matches the discovery of missing reliability of user

responses (also called natural noise or human uncertainty) as initially discovered

by Hill et al. (1995) and described in the previous section.

This correspondence between the descriptions of data quality in two different research

areas indicates the potential for a straightforward transfer of concepts from one area to

the other. One concept that can be adapted is the operationalisation of uncertainty which,

in general, can be described as a “non-negative parameter characterizing the dispersion

of the quantity values being attributed to a measurand, based on the information

used” (JCGM, 2008b, p. 25). In particular, the BIPM operationalises (measurement)

uncertainty as follows:

“Uncertainty of measurement comprises, in general, many components.

Some of these components may be evaluated from the statistical distribu-

tion of the results of series of measurements and can be characterized by

experimental standard deviations [also known as type-A evaluation]. The

other components, which also can be characterized by standard deviations,

are evaluated from assumed probability distributions based on experience or

other information [also known as type-B evaluation].” (JCGM, 2008a, p. 2)

35



CHAPTER 2. RELATED WORK

The representation of human uncertainty by standard deviations for each user-item

pair is a difference to the research approaches used by Hill et al. (1995) and Amatriain

et al. (2009a). Moreover, the metrologist perspective does not consider a true value plus

uncertainty separately but holistically combined in a probability density (cf. JCGM,

2008a, p. 6). This reflects the idea that the true value remains unknown and can only

be located within intervals to a certain degree of probability. For a measurand, there

are two different ways of gathering the necessary information to construct a probability

density. The type-A evaluation is based on the frequentist definition of probability, i.e.

that the probability of an event equals the relative frequency of its occurrence for an

infinite number of observations (cf. Schurz, 2015, p. 3). The repeated rating of films as

applied in Hill et al. (1995) and Amatriain et al. (2009a), for example, can be considered

as type-A evaluation. In contrast to this, the type-B evaluation relies on the Bayesian

definition of probability, i.e. probability is the personal degree of belief for an event to

occur (cf. Schurz, 2015, p. 3). Such evaluation might be needed to account for different

types of measuring devices (or to develop novel instruments of collecting uncertainty

information as in our case).

An important concern within the field of metrology is the so-called propagation of

uncertainty. This becomes relevant as many quantities can not explicitly be measured

and must be calculated on the basis of other quantities. In this light, JCGM (2008c)

defines propagation as a

“method used to determine the probability distribution for an output

quantity from the probability distributions assigned to the input quantities

on which the output quantity depends.” (JCGM, 2008c, p. 5)

From an era in which computational capacity was still very limited, a method has been

established to approximate the uncertainty propagation. This method assumes that

all uncertain quantities are independent and normally distributed while the output’s

standard deviation is then calculated by using a Taylor-series where terms of higher order

are omitted. This well-known approach is also called the Gaussian Error Propagation.

Comprehensive introductions and derivations can be found in Ku (1966) and Taylor

(1997). While being easy to compute, this approach has the limitation of not being

able to account for type-B evaluation completely: Measured quantities are nowadays

assigned an arbitrary probability density that is not necessarily a Gaussian. Quantities

calculated therefrom are then assigned a distribution by means of a convolution of all
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their argument densities. This model is comprehensively described in JCGM (2008a).

Moreover, a computational extension via Monte-Carlo simulations can be found in

JCGM (2008c). Monte-Carlo simulation in this sense is regarded as any “method

for the propagation of distributions by performing random sampling from probability

distributions” (JCGM, 2008c, p. 5).

In this thesis, the missing reliability of user responses is considered as the uncertainty

of a user rating (measurand). The metrologist approach is adopted and this uncertainty

is operationalised as the standard deviation of a respective probability density. To

some extent, this model is similar to those already used by Said et al. (2012) with

the difference that these authors considered ratings and standard deviation separately

whilst the whole probability density is employed in this thesis. In order to obtain the

uncertainty information related to user feedback, both evaluations (type-A and type-B)

are used. The type-A evaluation dictates a repeated rating task as it has already been

used by other authors before (cf. previous section). In contrast, the type-B evaluation

is the foundation for a novel measuring instrument introduced in Ch. 3. Its essence

is that users are required to provide their personal belief about the adequacy of each

possible rating option on a Likert scale. The advantage of this novel instrument over

the type-A based rating is that the entire probability density is surveyed in just one

single rating trial. This information is then used to construct feedback distributions for

each user-item pair. According to JCGM (2008c) and the maximum entropy principle

that is introduced there, the parametric model of choice is a Gaussian (cf. JCGM,

2008c, pp. 18–20). The rationale behind this data model is its minimisation of hidden

assumptions given available data. However, by using the Monte-Carlo simulation, one

is not restricted to Gaussians as a variety of parametric and even non-parametric

distributions can be used as well.

In this thesis there is also an answer given to the Herlockers question, i.e. how large

does a potential accuracy improvement has to be in order to be statistically significant

(cf. Herlocker et al., 2004, p. 19). In doing so, the uncertainty propagation is performed

for the RMSE in Ch. 4 and by analysing the overlapping of two distributions, an error

probability for the most likely ranking order will be derived. This forms the basis for a

hypothesis test providing information about the statistical significance of improvements.

The uncertainty propagation will be carried out using both methods, the Monte-Carlo

simulation as well as the Gaussian Error Propagation. The Monte-Carlo simulation
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guarantees freedom of choice for the distribution models while the Gaussian Error

Propagation provides fast solutions in big data scenarios.

2.5 Uncertainty Concepts in Computational Neuroscience

For two particular reasons, there is a need to seek for biological theories that might

explain the present phenomenon: (1) Having found user feedback to be distributed does

not necessarily lead to the conclusion that decision-making yields a random component.

Another possibility might be that prior information such as film trailers seen before

(user history) leads to different constant biases. This implies that user feedback is

indeed reliable and any kind of uncertainty can be resolved by simply knowing the

user’s surroundings together with its corresponding bias. (2) Since nature often provides

solutions for technical problems, e.g. the idea of neural networks, it might be fruitful to

develop novel approaches for predictive data mining that rely on a biological basis. A

biologically deduced user model may represent uncertainty in recommender systems so

that uncertainty can be predicted as well. The following paragraph is a brief overview

of related biological contributions. A comprehensive discussion in the light of model

selection is given in Sec. 6.2.

The assumption of underlying distributions for sensory perception (and decision-

making) is the essence of the Bayesian brain hypothesis which is thoroughly described

in Doya et al. (2007). The utilisation of probability densities is supported by exper-

iments of cue integration: In Knill and Pouget (2004), auditory and visual stimuli

have simultaneously been presented to test subjects. Given these stimuli, the subjects

had to estimate the direction of an (imaginary) event that evoked both stimuli. The

certainty of such stimuli has been altered by adjusting the volume (auditory certainty)

and the contrast (visual certainty). The results show that the subjects’ estimations

were close to model-based estimations that originated from applying the Bayes rule to

corresponding stimuli distributions. The authors concluded that human beings develop

approximation strategies of Bayes-optimal integration and must hence possess an in-

ternal (neuronal) representation of probability densities as well (cf. Knill and Pouget,

2004, pp. 712–713). A possible explanation for the occurrence of internal probability

distributions is given by Faisal et al. (2008). The authors describe random mechanisms

that lead to so-called neuronal noise and they make this noise responsible for trial-to-trial

variability which is considered “a prominent feature of behaviour” (Faisal et al., 2008,
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p. 292). This explanation is picked up by Ma et al. (2006) and is extended to the theory

of probabilistic population codes. This theory describes the genesis and representa-

tion of internal distributions which might be fruitful for the development of a user model.

In this thesis, the theory of probabilistic population codes is transformed into a

user model that can be combined with a variety of machine learning techniques. In

doing so, the theory of population codes is fully adopted as described by Ma et al.

(2006). Missing specifications are discussed for those degrees of freedom that influence

the neuronal activity and for possible aggregation functions that map neuronal activity

onto probability distributions. Both specifications are determined through computer

simulation. A novelty for this theory is its application to decision-making for it has so

far only been studied in the light of sensory perception.
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The purpose of this chapter is to introduce the metrological model of uncertainty, to

deduce two measurement approaches for this phenomenon, and to comparatively analyse

their specific properties. These measurement approaches will be used for conducting

an online user experiment whose data set will be relevant for the further analyses of

this thesis. This chapter is mainly based on my work Jasberg and Sizov (2019) and

was published almost verbatim there. Furthermore, the results of this chapter and

especially the figures along with their interpretations were also used for Jasberg and

Sizov (2017c) and Jasberg and Sizov (2018c). However, all these sections underwent a

linguistic revision.

3.1 Uncertainty Models and Measurement Approaches

The concept of uncertainty is understood disparately in different scientific disciplines.

In terms of human-computer interaction, human uncertainty is considered as a lack

of reliability caused by the fact that people cannot reproduce their decisions during

repeated interactions (cf. Amatriain et al., 2009a). In this sense, human uncertainty

could constitute a characteristic feature of the cognitive process, which significantly

influences the outcome and thus leads to condition-dependent and temporal instability.
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This assumption is going to be evaluated in forthcoming chapters. In natural science

and metrology, uncertainty is understood as a motivated doubt about the validity of a

result. Uncertainty can therefore be seen as an additional dimension assigned to the

measurement result, which denotes the scattering of values for a measured quantity (cf.

JCGM, 2008a, p. 2). Both perspectives can be combined and thus the lack of reliability

can be described by metrological metrics of scattering. The most important features of

this modelling can be summed up briefly:

“Thus a Type A standard uncertainty is obtained from a probability

density function [...] derived from an observed frequency distribution [...],

while a Type B standard uncertainty is obtained from an assumed probability

density function based on the degree of belief that an event will occur [...].”

(JCGM, 2008a, p. 7)

Uncertain quantities are therefore modelled as random variables X following a specific

probability density fX , whereby the distribution’s shape and its width, in particular,

is determined by uncertainty. This model fits well with the results of the RETRAIN

study (as described later) and examples of assigned distributions can be seen in the

histograms of repeated ratings as depicted in Fig. 3.6. From theoretical considerations,

normal distributions prove to be the models of choice in this case: On the one hand,

this is supported by theories of neuroscience in which the propagation of prior densities

is carried out in a recurrent neural network. In this case, one necessarily yields a normal

distribution as the posterior density due to the central limit theorem and the law of

large numbers (cf. Ma et al., 2006, p. 1433). But also in metrology and physics, the

normal distribution is proposed to be the best model for a given central tendency and

scattering. In this case, the normal distribution maximises the information entropy

(maximum entropy principle) (cf. JCGM, 2008c, p. 20), i.e. this distribution is the one

that makes the least additional (unknown) assumptions. In this contribution as well,

the normal distribution will be utilised. However, computations are not limited to this

type and other distributions may be appropriate as well. At this point, the question

arises of how to obtain the necessary information about the specific parameters of the

underlying distribution. Metrology distinguishes between two different measurement

methods based on different definitions of probability:

The Frequentist Approach: This way of deriving a user’s feedback distribution is

based on the frequentist definition of probability, i.e. the probability of an event
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to occur is equal to its relative frequency for infinite trials. This procedure thus

requires a repeated rating of the same products (re-rating) and has already proved

itself in Amatriain et al. (2009b). Re-rating produces a rating tensor (Ru,i,t) where

the coordinates (u, i, t) encode the rating that has been given to item i by user u

in the t-th trial. From this record one can derive a unique rating distribution for

a fixed user-item pair ν := (u, i) by considering tensor-slices in trial-dimension

Rν,• := (Rν,t)t=1,...,5 = (Rν,1, . . . , Rν,5) and computing the maximum likelihood

parameters for the chosen data model.

The Bayesian Approach: An alternative approach to accessing human uncertainty

is based on the Bayesian definition of probability, i.e. the probability of an event

to occur is the degree of one’s personal confidence in this occurrence. Under

this assumption, one can obtain a rating-distribution directly from requiring a

user’s personal belief that a particular rating score appears to be adequate for the

corresponding item. This procedure is denoted as pdf-rating (probability density

function). In mathematical terms: Having a 5-star scale S = {1, . . . , 5}, a user

associates to each possible rating s ∈ S a degree of personal confidence or belief

cs about the appropriateness of s concerning the item to be rated. The personal

confidence is provided by a second scale C = {1, . . . , 5}. Hence, a pdf-rating

pν = {(1, c1), (2, c2), (3, c3), (4, c4), (5, c5)} (3.1)

is given by a family of two-dimensional vectors in S × C where the values for

ones personal belief are considered as specific weights for each of the associated

ratings. In order to retrieve the feedback distribution, this rating is converted

into its frequentist equivalent by use of the transformation

τ : pν �→ (1, . . . , 1︸ ︷︷ ︸
c1-times

, 2, . . . , 2︸ ︷︷ ︸
c2-times

, . . . , 5, . . . , 5︸ ︷︷ ︸
c5-times

) (3.2)

since the absolute histogram of this frequentist translation will exactly reproduce

the data entered by the user, i.e. this transformation does not systematically bias

the intention of a user’s response. Subsequently, a maximum likelihood estimation

is performed on τ(pν) to find the optimal parameters for a chosen data model.
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3.2 User Study: Repeated Trailer Rating (RETRAIN)

Since there are only a few datasets in which human uncertainty was collected, the

RETRAIN (Reliability Trailer Rating) study was conducted as an online experiment

in which N = 67 participants had watched theatrical trailers of popular films and

provided ratings according to the frequentist and the Bayesian approach. As far as it

can be ascertained, this is the very first time that uncertainty in user responses has

been gathered by Bayesian approaches. The goals of this experiment are

1. to prove unreliable user feedback in an explicit rating scenario,

2. to explore the viability of survey methods to measure this uncertainty,

3. to find indicative hints for the origin of this uncertainty, and

4. to gather uncertainty data to use for further explorations.

Goal (1) has already been “proven” by Hill et al. (1995), but the main criticism of

the corresponding study is that the individual interviews have always been conducted

with a temporal gap of several days in between. In this time, the situational contexts

along with the cognitive and emotional states are very likely to change substantially.

This challenges the credibility of the results. Moreover, human uncertainty would just

emerge as the manifestation of a conglomerate of diverse situation biases and thus,

this data record does not allow for unprejudiced answers to explore other possibilities

for its origin. Complete control of the situational context would otherwise require a

laboratory experiment, but this can often target only a certain group (mostly university

students looking for experimental credits) rather than gathering a representative group

with a realistic composition of people. Also, users who almost always do their ratings

at home in front of their computer are certainly brought into a new and unfamiliar

environment, which causes distorting effects such as an increase in concentration, which

would normally not be present. For this reason, the decision was made against a

laboratory experiment in favour of an online survey instead.

For the conducted RETRAIN study, the repetition trials had to be done in a short

time sequence to minimise the probability of a change of situational contexts. This

method, in turn, allows the criticism that the previous trailers could affect the rating of

each subsequent trailer, so there might be a distorting Markov process. Unfortunately,
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Figure 3.1: Conduction of the RETRAIN study

this can not be excluded, but there have been several rating trials in which the order of

all trailers was randomised, i.e. each trailer always had a different “history” preventing

one trailer to permanently have a different (i.e. larger or smaller) bias than another

trailer. At this point, the origin of missing response reliability can not be clarified

without a doubt. On the one hand, strong changes in the emotional and cognitive states

can be excluded on average, since these variables usually do not change significantly

within one hour (average duration of the experiment) as long as no secondary activities

have been performed. On the other hand, even the randomised history of each trailer

can be understood as a (small) contextual change which may be important. However,

an argument will be introduced later that favours a natural and context-independent

uncertainty rather than a genesis through contextual change. The RETRAIN study

was set up with Unipark’s1 survey engine whilst the participants were engaged from the

1http://www.unipark.com/de/ (last accessed on Mar 10, 2020)
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crowdsourcing platform Clickworker2. All participants had to complete four phases:

1. demographics and instructions

3. pdf-rating proceeding

2. re-rating proceeding

4. comparison questions

The corresponding storyboard of this experiment can be found in Fig. 3.1. The different

phases can be described as follows:

Demographic Data and Instructions: The pre-defined goals of this experiment

require a generality which can only be assumed if the examined user group is

as representative as possible for a specific cultural domain. This is verified by

considering demographic information. Afterwards, the participants are instructed

for the upcoming re-rating tasks using screen messages that ensure equal conditions

in each experimental run. The participants are also informed that it might come

to repetitions for technical reasons. This prevents manual termination ahead of

schedule due to the assumption of technical errors. However, the true meaning of

those repetitions remain unclear to the participants.

Re-Rating Proceeding: During this phase, the participants watch several theatrical

trailers of popular films and television shows and after each trailer, a rating is

required on a 5-star scale (as used on Amazon, etc.). The re-rating phase starts

with an initiation run in which four very short trailers are shown and rated. One

of these introductory trailers is shown twice to prepare the participants for an

emerging redundancy so that confusion doesn’t arise in further progress. These

ratings are not recorded and won’t affect latter evaluations. After the initiation

phase, ten trailers are shown consecutively and must be seen completely ere a

rating can be given to continue (trial 1). Immediately at the end of the first trial,

all ten trailers are shuffled and presented once again (trial 2), i.e. there is no

noticeable break when switching to the next trial. In the second trial, ratings can

be submitted after 20 seconds. This ensures a shortening of runtime and acts as

a prevention of rapid loss of interest when watching the same trailer repeatedly.

This intention is also supported by adding five additional trailers (during the

third and fifth trial) which are not to be repeated, just to keep things new and

interesting. From the third trial, the trailers can be evaluated immediately, i.e.

2https://www.clickworker.de/ (last accessed on Mar 10, 2020)
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Trailer ID Title
Genre

(IMDb)
Duration
(mm:ss)

I1 Xena Intro adventure 00:59

I2 Terminator 2 science fiction 01:15

I3 Der König der Löwen family 01:25

T1 Star Wars 8 fantasy 02:16

T2 Fack Ju Göthe 2 comedy 02:44

T3 James Bond 007 - Spectre action 02:40

T4 Minions animation 02:44

T5 Fifty Shades of Grey romance 02:27

T6 The Walking Dead (Season 5) horror 01:25

T7 Big Bang Theory (Season 8) comedy 01:18

T8 Suits (Season 1) comedy 01:55

T9 Arrow (Season 1) crime 01:01

T10 Shannarah Chronicles (Season 1) fantasy 01:11

D1 Resident Evil horror 01:54

D2 Avengers: Age of Ultron action 02:12

D3 I, Frankenstein horror 02:37

D4 Jurassic World action 02:32

D5 Die Tribute von Panem - Mockingjay action 01:43

Table 3.1: Trailer information. Trailers in boldface have been recorded.

there is no blocking time. This procedure continues until all five rating trials

are completed. The submitted ratings have been recorded for five of ten trailers

so that the remaining ones acted as distractors, triggering the misinformation

effect, i.e. memory is becoming less accurate due to interference from post-event

information. Further trailer information can be found in Tab. 3.1.

pdf-Rating Proceeding: This phase starts with another instruction (screen messages)

telling the participants that they are about to face a new method for providing user

ratings. At this point, no additional information was given to examine if the new

design is intuitive and self-explanatory. The entire rating for an item is entered

by five sliders. A screenshot of the utilised rating interface can be seen in Fig. 3.2.
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Figure 3.2: Implementation of the pdf-rating in the RETRAIN study. By entering the belief
about the appropriateness of each rating, a probability density can be constructed.

Each of those sliders is used to set an answer to the question “Is a s-star-rating

appropriate for this item?” The answers do vary from “not appropriate at all”

to “very appropriate” and are internally encoded by integers 1 to 5. The initial

run consists of one single pdf-rating for training purposes (understanding the

new procedure) which is not recorded. Next, the participants have to rate those

five trailers that were recorded throughout the re-rating proceeding by using this

previously described new technique.

Altogether N = 67 people from Germany, Austria and Switzerland participated in

this experiment. This group can be parted into 57% males and 43% females as to see in

Fig. 3.3a. Although there is a slight gender imbalance, this is not significant considering

the sample size. Therefore, statements based on the RETRAIN study are not to be

regarded as gender-biased. The age distribution is depicted in Fig. 3.3b. There are

almost equal fractions of the most relevant age groups to be spotted, so there is no age

bias for further evaluations of this study. The education of participants is shown in Fig.

3.3c. A bias toward higher education can be recognised. In 2017, the fraction of those

without graduation was 4.0%, those with the graduation of “Realschule” was 23.1%

and those with “Abitur” was 31.9% (cf. Statistisches Bundesamt, 2019). Accordingly,
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(a) gender

(b) age groups

(c) education

Figure 3.3: Demographic data of the RETRAIN participants
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(a) using media

(b) rating items

(c) rating films etc

Figure 3.4: Rating experience/know-how of the RETRAIN participants
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the medium educational levels in the RETRAIN study are in very good agreement

with those of the German population. However, in 2017, 30.4% had a “Hauptschule”

diploma (but only 3% in the study), while bachelor and master degrees were at 2.2%

and 1.4% (but each over 20% in the study) (cf. Statistisches Bundesamt, 2019). So, the

RETRAIN study contains significantly less lower educational levels and significantly

more participants with higher education. This may be explained by the fact that many

students might use crowdsourcing platforms to earn money and finance their studies.

The habits of using media as well as rating products and especially films are depicted in

Fig. 3.4. All participants are sufficiently media affine and their rating frequency habits

range from “occasionally” to “often” in (almost) uniform distribution. According to

this analysis, it can be assumed to have gathered representative cross-sectional data

throughout the German-speaking population from Germany, Austria and Switzerland.

3.3 Existence of Uncertainty in Feedback Scenarios

The first goal of the RETRAIN study is to prove the existence of unreliable user feedback

in an explicit rating scenario.The obtained data set comprises 335 user-item pairs and

1675 individual ratings for the re-rating proceeding. From all user ratings, only 35%

manifested a consistent response behaviour whilst 50% changed their rating once and

15% changed their rating twice or more. A detailed breakdown can be found in Fig. 3.5.

The overall proportion of reliability is depicted by the outer ring: 65% of all users do

not provide consistent and reliable feedback in case of repetitions. Figure 3.6 depicts

exemplary relative histograms of repeated ratings given by the same users to the same

items. With these results, the criticism about the study of Hill et al. (1995) can be ruled

out that changes of opinion only take place over long periods. Instead, even on short

time intervals, one’s opinion can vary significantly so that a single measurement is only

an uncertain momentum of the user’s actual opinion. These results are in accordance

with the study of Amatriain et al. (2009b) and prove the existence of human uncertainty

in feedback scenarios. In contrast to this study, yet another measurement approach

for human uncertainty has been tested in the RETRAIN study in order to provide an

alternative and more practical method. At this point, the question arises as to the

equivalence of their results as well as possible advantages and disadvantages.
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0 chg (35%)

1 chg (49%) 2 chg (15%)

3 chg (1%)

Figure 3.5: Change of response behaviour in five consecutive rating trials aggregated from all
user-item pairs. This analysis indicates the existence of human uncertainty.

3.4 Systematic Comparison of Measurement Approaches

The second goal of the RETRAIN study is to explore the viability of survey methods

to measure human uncertainty. It can be shown that both measurement methods do

not lead to major differences between the resulting feedback distributions. To this end,

different attributes of the corresponding feedback distributions (obtained from both

approaches) are compared by using the following tests:

KS-test: With this test it can be determined if the user feedback distributions are

the same for both measurement methods, i.e. the Kolmogorov-Smirnov test (cf.

Krapp and Nebel, 2011, pp. 90–91) checks for the agreement of two probability

distributions in general. This is done by comparing the empirical (discrete)

distribution functions FX and FY of the random variables X and Y via d :=

supt∈R |FX(t)− FY (t)|. The equality of distributions is rejected at a significance

level of α if d exceeds the critical value Kα, which can be taken from tables.

Welch’s t-test: Even if the general equality of two distributions has to be rejected,

they may nevertheless possess the same expectation that could be assigned to a

user for future predictions. Therefore, Welch’s t-test (cf. Janczyk and Pfister, 2013,
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Figure 3.6: Visualisation of human uncertainty in the RETRAIN study: Exemplary histograms
of the ratings given by users in five consecutive trials for the same item.

p. 53) is performed to compare the expected values. Welch’s t-test is an adaptation

of Student’s t-test, however more reliable and suitable when the two samples have

not necessarily equal variances. On the basis of two underlying random variables

X and Y , Welch’s t-test defines a statistic by t := (x− y)/(s2X/nX + s2Y/nY)
1/2,

where x, y are the sample means, sX , sY the sample variances and nX , nY the

sample sizes, respectively. Again, the equality of means is rejected at a significance

level of α if t exceeds the critical value (quantile of the t-distribution) t(α,m) with

m degrees of freedom, which can be taken from tables.

Levene’s Test: For the case of mismatching distributions and mismatching expected

values, those distributions may still have the same variance that can be used

for further analyses. Thus, Levene’s test (cf. Ramachandran and Tsokos, 2009,

pp. 722–723) is used to investigate homoscedasticity, which is suitable for random

variables that are not necessarily normally distributed. Given the variables X and

Y with sample sizes nX and nY , the mean absolute deviations aX :=
∑nX

j=1 |xj− x̄|
and aY respectively are computed along with their mean value ā := (aX + aY )/2.

The respective test statistic then constitutes as

L := (nX + nY − 2) · nX(aX − ā)2 + nY(aY − ā)2

(
∑nX

j=1 |xj − aX|)2 + (
∑nY

j=1 |yj − aY|)2 .

Homoscedasticity is rejected with a significance level of α when L exceeds the

quantile F(α,1,nX+nY) of the F-distribution with 1 and nX +nY degrees of freedom.
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KS-test Welch’s t-test Levene’s test
n. rejected rejected n. rejected rejected n. rejected rejected

Item 1 59 (1.00) 0 (0.00) 52 (0.88) 7 (0.12) 52 (0.88) 7 (0.12)
Item 2 39 (0.98) 1 (0.02) 34 (0.85) 6 (0.15) 33 (0.82) 7 (0.17)
Item 3 31 (0.94) 2 (0.06) 23 (0.70) 10 (0.30) 26 (0.79) 7 (0.21)
Item 4 45 (1.00) 0 (0.00) 38 (0.84) 7 (0.16) 37 (0.82) 8 (0.18)
Item 5 33 (0.97) 1 (0.03) 28 (0.82) 6 (0.18) 26 (0.76) 8 (0.24)

Table 3.2: Hypothesis testing for the feedback distributions (absolute counts first, fractions
in brackets). The absolute count varies as the number of ratings with non-vanishing variance
changes for each item.

All results of hypothesis testing presented hereinafter has been performed by comparing

the respective p-values with a significance level of α = 0.05.

The test results are recapped in Tab. 3.2. For the equality of distributions (KS-test),

it can be noticed that only very small fractions of distribution-pairs can be deemed to

be significantly different. Vice versa, both measurement approaches produce feedback

distributions that do not differ significantly in almost any case. The comparison of

corresponding expectations (Welch’s t-test) reveals that these do not differ significantly

from one another in 83% (on average) of all cases. Similarly, a deviation from ho-

moscedasticity (Levene’s test) was only significant in 82% on average. It is noticeable

that the KS-test does not detect significant differences between two distributions, al-

though Welch’s t-test and Levene’s test detect different moments of these. This can be

explained by the robustness and the power of these tests or respectively by how the

test statistic is computed. The test statistic of the KS-test is linear in both arguments,

whilst the other tests take into account squared deviations. This ensures that small

deviations (less than one) are attenuated and larger deviations (greater than one) are

amplified. In the end, this means that the applied tests for the moments of a particular

distribution are much more sensitive and attest significant inequalities even for the

smallest deviations. Having this in mind, rejection rates of only 20% are still quite good.

Considering all the tests together, it can be argued that both methods, the re-rating

and the pdf-rating, lead to feedback distributions that closely approximate each other.

At this point, some hints have likewise been found for the third goal of the RETRAIN

experiment, which was to narrow down possible origins of unreliable user feedback.

Earlier, the argument has been introduced that the varying “history” of a trailer, i.e.
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the variation of trailers that have been shown before, can be considered as a change

in the situational context of a user and that this change of context might lead to

differences in the current rating. However, for the pdf-rating, there is no such thing

as a varying “history” during the measurement process since all uncertainty data is

collected at once. The equality of resulting distributions, therefore, suggests that the

“history” of a trailer has no impact on the uncertainty. The unreliable feedback must

thus possess another origin. So, the alternative explanation that uncertainty is inherent

to the human’s natural cognition process becomes very attractive. Accordingly, the

term “human uncertainty” is well chosen because it expresses this property very well.

In this contribution, human uncertainty is represented by the standard deviation or

variance of the individual feedback distributions. In contrast to the feedback distributions

that have been discussed above, the uncertainty distribution itself differs strongly when

changing the measurement approach. For the re-rating, we yield a power-law-distribution

as to see in Fig. 3.7a, i.e. many people are quite certain whereas larger uncertainty only

manifests for a few people. It can be assumed that this is an artefact of the conventional

rating instrument in which customers are forced to choose precisely one element of

a discrete rating scale whilst other rating possibilities or even weightings cannot be

considered at all. In contrast to this, the pdf-rating provides normally distributed

uncertainties as to see in Fig. 3.7b and 3.7c, which are often found when considering

human characteristics. The pdf-rating allows for a simultaneous weighting of different

rating options and can be deemed to be more suitable for uncertain decision-making. A

remarkable property of the resulting distributions of the pdf-rating when aggregated for

each item is the common mean value of 1.3 stars. This can already be observed visually

in those examples of Fig. 3.7. In particular, Welch’s t-test indicates that only 10%

of all distributions possess a significantly different expectation. The fact that human

uncertainty appears to be an equally strong property in every human being (with some

natural fluctuations) is hence another indication for a cognitive origin. As already

indicated in Fig. 3.6, the user feedback can be modelled with normal distributions.

Further use of the KS-test reveals that the deviations between the empirical densities

and associated normal distributions are not significant in any case. In forthcoming

sections, the normal distribution will provide significant advantages when modelling the

uncertainty propagation in scenarios of comparative recommender system assessment.

It should be noted that approximated statistics of a distribution model can only

be located within confidence intervals since they are computed on samples rather than
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(a) re-ratings

(b) pdf-ratings for item 1

(c) pdf-ratings for item 2

Figure 3.7: Distributions of feedback variances representing human uncertainty
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on the whole population. This means that due to the limited amount of information

gathered by both approaches, the statistics themselves are subject to some kind of

measurement uncertainty as well. In the following, it will be investigated whether the

choice of a particular measuring method influences this measurement uncertainty. For

the assumption of normality, the confidence interval for the parameter μν is given as

μν ∈
[
x̄ν − t(n−1,1−α

2
)
sν√
n
; x̄ν + t(n−1,1−α

2
)
sν√
n

]
(3.3)

where x̄ and s are the point estimates for the mean and Bessel-corrected standard

deviation and t(p,k) represents the p-quantile of the t-distribution with k degrees of

freedom (cf. Henze, 2013, p. 341). Additionally, the confidence interval of σν for normality

assumption is given as

σν ∈
[
sν
√

(n− 1)/χ2
(1−α

2
,n−1) ; sν

√
(n− 1)/χ2

(α
2
,n−1)

]
(3.4)

where χ2
(q,m) is the q-quantile of the χ2-distribution with m degrees of freedom (cf. Roxy

and Devore, 2011, p. 295). To evaluate the measurement uncertainty for the feedback

distribution’s parameters, one can rely on the length of the 95% confidence intervals

for the mean and variance. The shorter this interval, the smaller the measurement

uncertainty, i.e. the more precise can a particular parameter be determined. The

superiority of a specific measurement approach can then be expressed by the auxiliary

variable

Δμ := �(I95(μre))− �(I95(μpdf )), (3.5)

where I95(μ) is computed according to Eq. 3.3. If Δμ > 0, then the length �(I95(μre))

of the re-rating-interval is greater than the length �(I95(μpdf )) of the pdf-rating-interval,

i.e. the pdf-rating appears to be more precise in locating the mean value. The analysis

of the standard deviation is done analogously by using Eq. 3.4.

Figure 3.8 depicts the distribution of these length differences. It can be seen that

the mass-ratio of improvements and deteriorations is very balanced. At the same time,

it can be seen that the strength of these deteriorations is small in comparison to the

strength of improvements. The expectations show that on average, the pdf-rating will

produce a slight increase in overall precision. This may be explained by the fact that

the pdf-rating allows for options that cannot be captured at all with the re-rating.

Another suitable approach to compare the measurement precision is to compute

the percentile distributions by re-sampling which turned out to be normal distributions
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(a) measurement uncertainty of the mean value

(b) measurement uncertainty of the variance

Figure 3.8: Analysis of the feedback distributions’ precision depending on the applied method
of gathering uncertainty
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again. Accordingly, the standard deviations of these percentile distributions naturally

become representative for the inherent measurement precision. Therefore, let q be

a particular percentile of a feedback distribution. A percentile distribution is then

obtained qua re-sampling with respect to the uncertain feedback distribution parameters.

Let σre(q) and σpdf (q) be the standard deviation of those percentile distributions when

re-sampling from the re-rating proceeding or the pdf-rating proceeding, respectively.

The auxiliary quantity

δq := σre(q)− σpdf (q) (3.6)

is positive for σpdf (q) < σre(q) indicating superiority of the pdf-rating. When com-

puting scatter plots for δq against q for each user-item pair, there are three repetitive

archetypes to be spotted, which are monotonic behaviour (homogeneity), at least two

clusters (clustered), and high dispersion with no visible relationship (irregularity).

Representatives of these archetypes can be seen in Fig. 3.9. When interpreting these

archetypes, it is important to remember that the auxiliary variable is a measure of

how much precision is gained by choosing between the re-rating and the pdf-rating

proceeding. This provides a hint as to which approach applies best to a current rating

and allows for conclusions about the respective user:

• Homogeneous users either show no significant precision effect (constant line) or

a functional relationship so that the “uncertainty by action” as measured by the

re-rating can be converted into “uncertainty by cognition” as measured by the

pdf-rating and vice versa. Cognition and action are closely linked for these users,

i.e. they make their decisions very thoughtfully and possibly not based on feelings.

• For the cluster archetype, a functional relationship is to be seen which is interrupted

at different points in which uncertainty by cognition seems to have more precision.

There is no functional relationship between cognition and action in these cases so

that they can be understood as the manifestation of a “gut feeling”.

• The irregular archetype does not show any relationship between action and

cognition. Probably, those users have not rated seriously and just clicked through

the online survey.

The fractions of these groups are similar to those of human uncertainty (cf. Fig. 3.5):

Half of the users utilise their gut feeling when giving feedback, while only about a third

of the users turn out to be a reliable source of information.
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(a) homogeneous (28% of all users)

(b) clustered (45% of all users)

(c) irregular (27% of all users)

Figure 3.9: Examples of archetypes showing where cognition is more precise than action
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3.5 Measurement Applicability and User Satisfaction

The second goal of this study was to explore the viability of survey methods for gathering

human uncertainty information. To this end, both methods have been compared in a

small follow-up questionnaire. As a result, two-thirds find the re-rating proceeding easier

whilst a quarter does not see any differences in the difficulty of the two approaches.

This can be explained by the fact that the re-rating simply repeats a long-known

and standardised method. Despite the repetition, the basic principle has long been

internalised. In the case of the pdf-rating, however, the user has to adapt to a completely

new questioning approach which seems to be more cumbersome and therefore more

complicated. This can certainly be improved by granting users more time to get used

to this new approach. On the other hand, when questioning the participants about

their very own motivation to continue giving product ratings, both methods perform

equally, i.e. there is no preference for one particular method. So, if it is up to the

users, both methods are equally applicable, even if the pdf-rating is perceived as more

difficult at first sight. From a technical point of view, the collection of a re-rating is

much more demanding: If the evaluation is repeated to rapidly, i.e. with too short

temporal gaps or with too few distractors in between, this proceeding will not result

into a valid uncertainty measurement due to memory effects. Then again, if the time

intervals are too long, incisive changes of one’s situational context may occur so that a

possible bias does not allow a valid measurement as well. Applying constant laboratory

conditions to a group of real users (to guarantee measurement validity) is certainly

difficult. By contrast, the pdf-rating is much more flexible to use and far less demanding

in its control.

3.6 Chapter Summary

In this section, two methods are presented to gather information about human un-

certainty from explicit feedback. The re-rating proceeding measures by employing

a user’s action, i.e. when repeating the same feedback task after the memory of the

first time has subsided. On the contrary, the pdf-rating measures by employing a

user’s perception, that is, by asking for the personal confidence for the correctness of

each possible rating. Both methods lead to feedback distributions that do not differ

significantly from each other. However, the distribution of uncertainty for the entire
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population is considerably different. This may be explained by the fact that for the

re-rating proceeding only discrete values are required each time, while the pdf-rating

allows for considerably more gradings and relations between possible ratings. If people

are indeed making decisions based on internal distributions, the pdf-rating constitutes

a much more natural input method. In terms of measurement precision, the pdf-rating

is also slightly superior to the re-rating. Both approaches can be easily adapted for all

forms of explicit user feedback. Either one repeats the questioning of users multiple

times or requires the personal confidence or belief for all response options at the same

time. In a follow-up survey to the RETRAIN study, the participants stated that they

have no special preference for any of these measurement approaches despite the assumed

simplicity of the re-rating. This fact is especially important if one considers how to

collect more explicit user feedback and motivate its input in the future. The collected

data set from this experiment will be essential for any of the further analyses, i.e. all

further explorations are either based directly on this data set or arise from simulations

that transfer this data set to other situations.
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The purpose of this chapter is to elaborate on subgoal B, i.e. to demonstrate and

analyse limitations for comparative assessments of recommender systems in terms of

accuracy metrics. This chapter is mainly based on my work Jasberg and Sizov (2019) and

has been published almost verbatim there. In addition, various parts of this chapter have

been formerly published in corresponding articles as well: The Monte-Carlo analyses for

the RMSE density along with the worst/best-case consideration have been published

Jasberg and Sizov (2017a). The ranking error probability as well as the sensitivity

analysis for the error probability and RMSE density has been published in Jasberg and

Sizov (2018a). The magic barrier estimation has been published in Jasberg and Sizov

(2017b). A summary has been published in Jasberg and Sizov (2018c), along with the

computation of ranking errors for the Netflix Prize. However, this chapter underwent a

linguistic revision for this dissertation.

4.1 Modelling Uncertainty Propagation

It has already been demonstrated in Ch. 1 that the presence of human uncertainty

in explicit user feedback leads to some kind of uncertainty in metric scores that are

calculated therefrom. This section is dedicated to describe possible models of uncertainty

propagation (research question B1). An arbitrary metric Z can be seen as a composed
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quantity, i.e. it cannot be measured directly but has to be computed on the basis of

measurable quantities such as user feedback. Mathematically speaking, let (Xk)k=1,...,n

be an arbitrary family of random variables (e.g. user feedback) and g ∈ C∞(Rn) a

smooth function that is not necessarily linear. Then Z = g(X1, . . . , Xn) is denoted a

composed quantity (e.g. an accuracy metric) and becomes a random variable itself. The

probability density fZ of Z emerges as a convolution of all densities (fXk
)k=1,...,n with

respect to the mapping g (cf. JCGM, 2008c, p. 8). This reasoning can be understood

heuristically: For each draw, there is a variety of possibilities for an outcome xk of a

random variable Xk. Having one outcome x1, . . . , xn for each random variable, one can

be compute a single outcome z = g(x1, . . . , xn) of the composed quantity Z. Accounting

for all the possibilities for x1, . . . , xn (e.g. when repeating draws infinitely) will then

result in a variety of calculated outcomes z. The normed relative histogram of all

z-values is a representation of the probability density fZ (according to the frequentist

definition of probability). For a better understanding, this explanation is additionally

illustrated in Fig. 4.1.

Determining propagation via Monte-Carlo simulation. A typical example of

such composed quantities are accuracy metrics, e.g. the mean average error (MAE),

the mean squared error (MSE) and the root mean squared error (RMSE) among many

others. The derivation of a metric’s probability density will be exemplified by using the

prominent accuracy metric

RMSE :=
√
MSE =

√
1

N

∑
ν

(Fν − πν)2, (4.1)

where Fν ∼ N (μν , σ
2
ν) is the feedback distribution for a user-item pair ν := (u, i), πν

is the corresponding prediction of an arbitrary recommender, and N is the number of

user-item pairs. For each of the Fν a sample Sm(Fν) := {f1ν , . . . , fmν } is computed with

m pseudo-random numbers (Monte-Carlo trials) that are drawn from the underlying

feedback distribution. With these samples, one can compute a sample for the RMSE via

Sm(RMSE) =

{
zj =

√
1

N

∑
ν

(fjν − πν)2
∣∣∣ j = 1, . . . ,m

}
. (4.2)

Post hoc illustration of this sample by a normalised relative histogram leads to a

representation of the RMSE’s density, which can then be assigned a distribution model

with statistics derived from a maximum likelihood estimation. Due to randomness,
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Figure 4.1: Illustration of a Monte-Carlo convolution of probability densities. Let X1, . . . , X5

be arbitrary random variables. For each variable, single outcomes (columns) are drawn and
for each complete set of draws (rows), a quantity can be computed through a mathematical
function g. All these calculated values can be understood as the representation of a novel
random variable Z = g(X1, . . . , X5). For infinite repetitions, the normed relative histogram of
all calculated representations converges into the probability density of Z.

these Monte-Carlo simulations may fluctuate slightly for computation repetitions, but

this effect diminishes for a high number of trials. In the present analyses, stable results

have been reached by setting m = 106.

In Sec. 3.4, it has been shown that measurement approaches for human uncertainty

only suffice to locate the feedback distribution’s statistics within confidence intervals.

Thus, the question arises how this measurement uncertainty affects our results. To

investigate this issue it is crucial to have sample RMSE distributions as well as sample

recommender systems. In the following, there are six recommender systems to be used

which are defined by their predictors via

Recommender R1 π := mean of ratings from user to item

Recommender R2 π := 1st ratings from user to item

Recommender R3 π := 2nd ratings from user to item
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Recommender R4 π := 3rd ratings from user to item

Recommender R5 π := 4th ratings from user to item

Recommender R6 π := 5th ratings from user to item.

For each of the recommender systems, samples Sm(RMSE(R k)) are computed on the

basis of the RETRAIN data record. To explore the impact of measurement uncertainty,

one simply computes the borderline cases for the RMSE distributions by assigning

the parameters μν and σν of each feedback distribution as the lower limits of their

corresponding confidence interval and the upper limits, respectively.

Figure 4.2 visualises the impact of measurement uncertainty for the re-rating proceed-

ing (the pdf-rating produces similar results). It follows that the resulting distributions

of the RMSE are ambiguous. A good distinction can be recognised for three groups

of RMSEs in the minimum case. Therefore, a ranking of these groups will be possible

without having large probabilities of error. However, this clear distinction is no longer

possible for the maximum case. In this case, one cannot build a ranking order since all

recommender systems are more or less the same in terms of this specific accuracy metric.

The true distributions of those RMSEs can vary between these two limits but remain

unknown on the basis of the information collected. In short, with only five re-ratings

or one pdf-rating, it is not possible to get high-quality uncertainty information. This

deficiency is not grounded within this new probabilistic perspective itself. In reality, one

has to distinguish between two different types of uncertainty: On the one hand, there is

the human uncertainty (leading from feedback scores to distributions) which is in the

main focus of this thesis. But on the other hand, there is also a kind of measurement

error which is denoted as measurement uncertainty. The variability for the RMSE

distributions in Fig. 4.2 is completely explained by the impact of this measurement

uncertainty and the small amount of information that can be measured.

But how much information is needed to reduce the ambiguity of the RMSE? To

answer this question it is necessary to gradually increase the number of re-ratings (or

to allow for finer graduation of the confidence scale when performing the pdf-rating).

Both will result in larger data sizes and decreasing widths of corresponding confidence

intervals. A simulation is used to estimate the number of re-ratings that are necessary

to bring both borderline cases closer together. As a measure of this convergence,

the intersection area of the minimum and maximum density is computed for each

recommender system as explained in Fig. 4.3. High intersection areas will indicate that
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(a) best case

(b) worst case

Figure 4.2: Borderline cases for the RMSE distributions emerging from the ambiguity of
feedback distributions
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Figure 4.3: Measure of convergence for two probability densities that differ by a shift of
their location parameter. When this shift (distance h) decreases, the intersection area of both
densities converges to one.

both densities are close together. As can be seen from Fig. 4.4, between 1000 and 2000

re-ratings are required to achieve a convergence of both borderline cases by more than

90%. This means that users in a real rating scenario would have to re-evaluate the

same item at least 1000 times in order to locate the RMSE distribution accurately. For

the pdf-rating, this amount of information is equivalent to having a discrete confidence

scale C = {0, 1, . . . , 200}. Therefore, both solutions are virtually not feasible. No user

would re-evaluate the same item for a thousand times, nor would a user be able to cope

with the size of an ordinal scale providing 200 different options. The development of

novel feedback procedures with higher informative value is still at an infancy stage and

remains as an interesting direction of research for the future.

Although the statistical simulation of convolutions produces excellent results while

also being easy to realise, run-time problems arise for big data. This is demonstrated by

computing the RMSE for different data sizes on a bullx B510 computing node having

a 2.7 GHz Intel E5-2697v2 (Ivy Bridge EP) along with 55 GB DDR3 1866MHz (59.8

GB/s). A constant predictor πν := 3 will be used for each user-item pair as a possible

recommender system. The runtimes for different data sizes are depicted in Fig. 4.5.

For example, with N = 80 000 user-item pairs, the simulation already takes up to an

hour of runtime. To compute the RMSE on the Netflix test record (N = 2.8 · 106),
one would need about 30 hours. For this reason, it is necessary to find an analytical

solution or at least an approximation of the resulting metric distribution in a closed
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Figure 4.4: Intersection of both borderline cases of the RMSE distribution. The higher this
intersetction, the closer are both borderline distributions together.

form. In the following, such estimation will be derived with which the same results can

be obtained, however, in just a fraction of the simulation time. The runtime results

of this approximation are also depicted in Fig. 4.5 and shows that the RMSE can be

computed in less than 200 milliseconds on the Netflix test record.

Determining propagation via analytic derivation. The idea of deriving the

RMSE’s density analytically is to calculate its moments step by step for each particular

transformation that is used to process the user data. This effort becomes straightforward

if the mapping g of the composed quantity Z = g(X1, . . . , Xn) is linear in each of its

arguments since the (pseudo-)linearities

E[aX ± bY ] = aE[X]± bE[Y ] (4.3)

V[aX ± bY ± c] = a2V[X] + b2V[X] (4.4)

for the mean and variance can be used, where a, b, c ∈ R are scalars and X,Y are arbitrary

independent random variables. By means of the central limit theorem, E[g(X1, . . . , Xn)]
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Figure 4.5: Runtime of computing the probability density of the RMSE using Monte-Carlo
simulation (green) as well as approximates (blue) on a bullx B510 computing node

and V[g(X1, . . . , Xn)] become sufficient statistics for Z when large n are considered.

Considering the measured feedback distributions Fν , the expected value and variance

will first be derived for the accuracy metric

MSE := 1
N

∑
ν(Fν − πν)

2. (4.5)

Subsequently. the square root will be considered to obtain the corresponding statistics

for the RMSE. By using Gaussians as the underlying data model, each user feedback

Fν ∼ N (μν , σν) can be written as Fν = σνI + μν where I ∼ N (0, 1).

Then, Yν := (Fν − πν)
2 receives the parameters

E[Yν ] = E[(σνI +Δν)
2] = E[σ2

νI2 + 2IσνΔν +Δ2
ν ]

= σ2
νE[I2] + 2σνΔνE[I] + E[Δ2

ν ]

= σ2
ν +Δ2

ν (4.6)
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V[Yν ] = V[(σνI +Δν)
2] = V[σ2

νI2 + 2IσνΔν +Δ2
ν ]

= σ4
ν

(
E[I4]− E[I2]2

)
+ 4σ2

νΔ
2
ν

= 2σ4
ν + 4σ2

νΔ
2
ν (4.7)

where Δν := μν −πν represents the local prediction quality of an arbitrary recommender

system. In a second step, the random variable MSE = 1
N

∑
ν Yν is a sum of χ2-densities

and turns into a Gaussian for a large number of ratings. For this Gaussian, one yields

E[MSE] = 1
N

∑
ν E[Yν ] =

1
N

∑
ν σ

2
ν +Δ2

ν (4.8)

V[MSE] = 1
N2

∑
ν V[Yν ] =

2
N2

∑
ν σ

4
ν + 2σ2

νΔ
2
ν . (4.9)

For some composed quantities like the RMSE, this approach will not work properly

due to non-linearity, e.g. as for the root function. However, the expectation and the

variance can be obtained in integral-form due to the identity E[g(X)] =
∫∞
−∞ g(t)fX(t) dt

for arbitrary functions g. For the example of the RMSE, one yields

E[
√
MSE] =

∫ ∞

−∞

√
t · fMSE(t) dt (4.10)

V[
√
MSE] = E[

√
MSE

2
]− E[

√
MSE]2

= E[MSE]−
(∫ ∞

−∞

√
t · fMSE(t) dt

)2

(4.11)

where fMSE is the probability density function of the MSE - which is a Gaussian with

parameters given by Eq. 4.8 and 4.9. Unfortunately, these integrals can not be solved

analytically and must be approximated using numerical methods. The density function

of the RMSE can be derived by its cumulative distribution

FRMSE(t) = P (
√

|MSE | ≤ t) = P (−t2 ≤ MSE ≤ t2)

= FMSE(t
2)− FMSE(−t2)

= 2 · FMSE(t
2)− 1 (4.12)

and the probability density function can thus be written as

fRMSE(t) =
d

dt
FRMSE(t) = 2 · d

dt
FMSE(t

2) = 4t · fMSE(t
2). (4.13)

This method is exact and fast but may also be too complicated for an easy utilisation

in individually designed recommender systems. To increase simplicity, it would be

advantageous to have neat approximations in a closed form.
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Determining propagation via approximation. Approximating a metric’s density

can be done by the so-called Gaussian Error Propagation, which is a very common

approach in physics and metrology (cf. Ku, 1966). The core of this estimation is to

expand g ∈ C∞(R) into its Taylor series

g(X) =
∞∑
k=0

g(k)(μ)

k!
(X − μ)k (4.14)

where g(k)(μ) denotes the k-th derivative of g evaluated at the expectation of X.

Due to the linearity of the expectation, it follows that

E[g(X)] = E

[ ∞∑
k=0

g(k)(μ)

k!
(X − μ)k

]
=

∞∑
k=0

g(k)(μ)

k!
E

[
(X − μ)k

]
=

∞∑
k=0

g(k)(μ)

k!
mk (4.15)

where mk is the k-th central moment. For the variance and its quasi-linearity one yields

V[g(X)] = V

[ ∞∑
k=0

f (k)(μ)

k!
(X − μ)k

]
=

∞∑
k=0

(
f (k)(μ)

k!

)2

V
[
(X − μ)k

]
=

∞∑
k=0

(
f (k)(μ)

k!

)2

(m2k −m2
k) (4.16)

where the last line has been simplified by using the common identity V[(X − μ)k] =

E[(X − μ)2k] − E[(X − μ)k]2 = m2k −mk
2. The usual approximation is now to omit

terms of higher orders, like

E[g(X)] = g(μ) + g′(μ) ·m1 + . . . ≈ g(μ) (4.17)

V[g(X)] = g′(μ)2m2 + g′′(μ)2(m4 −m2
2)/4 + . . . ≈ g′(μ)2m2, (4.18)

where m2 = σ2 when using Gaussians. This approach can now be applied to the

accuracy metric RMSE =
√
MSE by setting

g(X) =
√
X and g′(X) = 1

2
√
X
. (4.19)

By inserting the MSE’s mean and variance from Eq. 4.8 and 4.9, one yields the following

estimations for the RMSE’s statistics

E[RMSE] = E[g(MSE)] ≈ g(μ) =
√

1
N

∑
ν σ

2
ν +Δ2

ν (4.20)

V[RMSE] = V[g(MSE)] ≈ g′(μ)2σ2 =
∑

ν σ4
ν+2σ2

νΔ
2
ν

2N ·∑ν σ2
ν+Δ2

ν
. (4.21)
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Since this is an approximation, its quality has to be investigated, i.e. the degree of

matching the true distribution obtained by simulation. In doing so, simulated means

and variances are compared with calculated ones in a regression analysis. For this,

N ∈ {50, 100, 150, 200, 500, 1000} means μ are sampled uniformly from the interval [1, 5]

and N variances σ2 are sampled uniformly from [σ2
min, σ

2
max]. The variance boundaries

result from the assumption of five repeated ratings (as happened in the RETRAIN

study) with the commonly used 5-star scale. Under these conditions, the variance yields

the limitations

σ2
min = Var({1, 1, 1, 1, 2}) = 0.16 and σ2

max = Var({1, 1, 1, 5, 5}) = 3.86. (4.22)

For each pair (μ, σ2) a sample of random numbers is drawn from N (μ, σ2) to perform

the convolution via Monte-Carlo simulation (Eq. 4.2) and via approximation (Eq. 4.20

and 4.21). For many repetitions, a lot of simulated means/variances can be plotted

against the approximated counterparts using linear regression. A perfect match between

simulation and approximation would lead to the regression y = 1 ·x+0 with a coefficient

of determination ρ2 = 1. The results

Sim(E) = 0.999 ·Apr(E)− 0.003 (ρ2 = 0.99) (4.23)

Sim(V) = 0.981 ·Apr(V) + 0.000 (ρ2 = 1.00) (4.24)

show that this condition is almost fully achieved and hence these approximations can

be considered as appropriate. However, not only the mean and the variance are of

great importance, but rather the entire probability density itself. While the simulated

distribution arises naturally from convolution, it is predetermined by assumptions for the

approximation approach. Therefore, it is necessary to evaluate the degree of matching

for both distributions. For each sample, discrete probability distributions Psim and

Papr are computed and analysed through the Jensen-Shannon-Divergence (JSD) as it is

introduced in Lee (2000) where it is described as a “useful measure of the distance [i.e.

similarity in this context] between distributions” (Lee, 2000, p. 2). It is defined as

JSD(Psim, Papr) :=
1

2
KL(Psim,M) +

1

2
KL(Papr,M) (4.25)

where KL(P,Q) :=
∑

i P (i) log(P (i)/Q(i)) denotes the commonly used Kullback-

Leibler-Divergence and M = 1
2(Psim + Papr). When using the binary logarithm for the

Kullback-Leibler-Divergence, the JSD yields the boundaries 0 ≤ JSD ≤ 1 (cf. Lin, 1991,
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Figure 4.6: Jensen-Shannon-Divergence for comparing the simulated distribution with a
predetermined Gaussian. Scores close to zero indicate a perfect matching.

pp. 147–148). This is also the variant used in this thesis. The outcomes for the JSD

are shown in Fig. 4.6. It can be observed that the mid-range of all outcomes is located

between 0.01 and 0.08 confirming a high similarity of the simulated distribution and

the assumed Gaussian respectively. There are, however, some outliers which only occur

for N = 50 ratings. This can be explained by the fact that the RMSE contains the sum

of squared normal distributions, which is χ2-distributed, but quickly converges to the

normal distribution for large N (cf. Walck, 1996, p. 39). Thus, the more ratings are

considered, the more adequate becomes a Gaussian as the assumed density.

4.2 Properties of Uncertainty Propagation

For the exploration of propagation properties (research question B2), the individual

dependencies between explicit user feedback and the RMSE density are considered by

employing a sensitivity analysis, i.e. it is determined how the distribution parameters

respond to the variation of its arguments. Therefore, one argument is varied within

reasonable boundaries while fixing all the other arguments at the same time. These

boundaries depend on the utilised scale as well as the measuring approach for human

uncertainty. Again, a 5-star scale is assumed as well as five repetition trials. Thus, the

deviations between feedback and prediction yield the boundaries 0 < Δν < 5 whereas

the possible non-vanishing variances range between 0.16 < σ2
ν < 3.86.
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Impact on the Metric’s Mean. Figure 4.7 depicts the outcomes for the expectation

μ of the RMSE in correspondence to the number N of user-item pairs, the average

deviation Δν as well as the average human uncertainty σ2
ν . Subfigure 4.7a shows that the

mean of the RMSE is not affected by N (straight line with vanishing slope). It can also

be recognised that the impact of human uncertainty is much higher for small deviations

than for large ones (width of coloured bands). For small deviations (green/lower band)

in particular, uncertainty may shift the RMSE’s location from 0.5 to 2.0 (+300%)

whereas a shift can only increase values from 4.0 up to 4.5 (+13%) for large deviations

(red/upper band). This can be explained by the fact that although both quantities

are equally represented in Eq. 4.20, the magnitude of differences is much higher for

the deviations Δν than for the human uncertainty σ2
ν . Thus, for large deviations, the

additional contribution of human uncertainty is lower. However, this implies serious

problems, because the better a recommender system becomes (lower deviations), the

more impact is given to human uncertainty – and this uncertainty is unlikely to be

improved if its origin lies within the cognitive process. Subfigure 4.7b shows the reaction

of the RMSE’s mean on the variation of the average deviation between prediction and

user feedback. The curve clearly shows that there is a functional dependency with

asymptote f(x) = x. Here, the width of the grey band is an indicator of the influence of

human uncertainty, which fades for large deviations. Again, a shift of the expected value

can be identified, but for a much finer gradation than in the figure before. Subfigure

4.7c depicts the dependency on the average human uncertainty. The corresponding

curve looks different from the curve obtained for the average deviation, although both

quantities contribute equally to the mean of the RMSE. This indeed demonstrates that

the magnitude of human uncertainty is much more limited than that of the deviations.

Certainly, this curve looks like a zoom into the beginning part of the graph in Fig. 4.7b.

Briefly restated: In general, the mean of the employed quality metric is mainly

determined by the deviations themselves. So far, this is a very good sign for the research

of recommender systems, because this proves the validity of the RMSE, i.e. it indeed

measures what it is supposed to – however with notable uncertainty. This uncertainty

receives the influence of up to 300% for well-operating systems, i.e. those systems with

small deviations between predicted and real user behaviour. Technically spoken: the

better a system becomes, the more impact is given to random fluctuations such as

comprised by human uncertainty. This is certainly not optimal for the current research

seeking accuracy optimisation and has so far only scarcely been considered in the latest
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(a) μ with respect to N

(b) μ with respect to Δν

(c) μ with respect to σ2
ν

Figure 4.7: Sensitivity analysis for the expectation μ of the RMSE distribution
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reports (cf. Enríquez et al., 2019). It is also striking that the RMSE, as small as it

becomes, does never vanish. This proves that the mere existence of human uncertainty

induces an offset, i.e. an RMSE score that cannot be fallen below. The existence of such

a barrier has already been predicted in Herlocker et al. (2004) and is denoted as the

magic barrier. For the RMSE in particular, this barrier has been theoretically estimated

in Said et al. (2012).

Impact on the Metric’s Variance. Figure 4.8 depicts the sensitivity analysis for

the RMSE’s variance σ2 in correspondence with variation of N , Δν and σ2
ν . In Subfigure

4.8a, the big impact of human uncertainty can be recognised (a large range between

the coloured bands). Although the deviations between prediction and action also have

an impact on the metric’s variance, it is relatively weak and is dependent on human

uncertainty itself. That is, the impact of deviations is poor (width of the green/lower

band) for a small uncertainty, but it can be amplified by large uncertainties (width

of the red/upper band). The most striking dependency of the metric’s variance is the

dependence on the number N of user-item pairs. On the one hand, it is surprising

that the precision of a particular metric gains from adding more data with additional

uncertainty. On the other hand, it is known from Eq. 4.21 that the variance scales with

1/(2N). This means that one yields a gain in precision for larger data sets very quickly.

This also means that the increase in precision for even larger data sets rapidly fades.

The decrease in the variance (i.e. the gain in precision) up to N = 3000 is tremendous

(-133%). Thereafter, a further increase of data no longer leads to such a remarkable

precision gain anymore. This finding may hold consequences on the economics of smaller

studies (e.g. testing of new interfaces) since there is a point from which on additional

participants will cost money but will not bring much benefit. This fast convergence

means that one still has to deal with the impact of human uncertainty for big data.

Subfigure 4.8b depicts the influence of the deviations. There is only a weak dependency

to be spotted (borders are approximately straight lines with vanishing slope). For

example, the magnitude of these deviations can increase the variance of the RMSE

from 0.045 to 0.06 (+33%, difference of red/upper curve representing high human

uncertainty) or from 0.01 to 0.012 (+20%, difference of green/lower curve representing

low human uncertainty). In contrast, the human uncertainty itself may impact the

variance much stronger (+300%, width of grey band). Subfigure 4.8c demonstrates the

impact of human uncertainty. Linear growth of the variance can be seen in dependency
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(a) σ with respect to N

(b) σ with respect to Δν

(c) σ with respect to σ2
ν

Figure 4.8: Sensitivity analysis for the variance σ2 of the RMSE distribution
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of human uncertainty and is amplified for large deviations (slope of the red/upper line

compared to the green/lower line). At the same time, human uncertainty can increase

the variance of the RMSE tremendously (difference in height of the coloured/outer lines)

in comparison to the deviations (width of grey band).

In summary, the variance of the RMSE is affected by deviations (small impact), by

human uncertainty (large impact) as well as by the number of user-item pairs (enormous

impact). This might be a very good sign for accuracy-driven research: Since human

uncertainty is unlikely to be improved, one possible way of dealing with its impact is

simply to use big data. However, this way of thinking works only within certain limits, as

the precision gain itself quickly decreases with an increasing amount of additional data.

Here one has to find the golden mean between the necessary precision and monetary

expense induced by more data. It will be demonstrated in later sections that even for

large data records such as the Netflix Prize, there is yet still a considerable variance that

corresponds to different RMSE distributions. The consequence of this non-vanishing

variance is that it induces a probability of error whenever a ranking of systems is built

with respect to a particular metric. This has to be investigated more closely.

4.3 Misjudgements in Comparative Evaluations

Research question B3 is about the impact of uncertainty on the comparative assessment

of recommender systems when using accuracy metrics. It has already been reported

in Sec. 1.2, that system rankings can not be considered as absolutely reliable anymore.

This phenomenon will now be described mathematically. Considering metrics Z1 and

Z2 as random variables, their distributions may possess a significant intersection. This

means that each ranking order Z1 < Z2 and Z2 < Z1 is possible, however with different

probabilities of occurrence. Consequently, no matter what ranking is finally chosen,

there is always a probability of error for this decision. Now that the RMSE distribution

can be determined on the fundament of uncertain user feedback, possible intersections

of two RMSE’s can be discussed along with induced ranking errors.

For a proper mathematical description of this error probability, let Z1 ∼ N (μ1, σ1)

and Z2 ∼ N (μ2, σ2) be two random variables representing arbitrary metric results

for two different recommender systems. The assumption of normality is justified by

previous considerations, i.e. the density of a composed quantity quickly converges into

a Gaussian for a large number of user-item pairs. Additionally, an auxiliary variable is
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defined as follows:

W := (Z1 − Z2) ∼ N
(
μ1 − μ2,

√
σ2
1 + σ2

2

)
(4.26)

The most intuitive way to build a ranking of two distributions is to compare their

expected values. If μ1 < μ2, then approach 1 can be considered to be better than

approach 2. Due to the non-vanishing variance, this decision may be subject to an error

which occurs with a probability of

P (Z1 ≥ Z2) = P (W ≥ 0) = 1− FW (0), (4.27)

where FW is the cumulative distribution function of W . Since W is normally distributed,

it can be represented by a transformation of the standard-normal distribution and

therefore FW can be expressed in terms of the standard-normal cumulative distribution

function Φ. This finally leads to

P (Z1 ≥ Z2) = Φ

(
μ1 − μ2

(σ2
1 + σ2

2)
1/2

)
. (4.28)

This error probability naturally accounts for the means of both metric distributions

(impacted by the recommender accuracy and human uncertainty) as well as their

variances (impacted by the amount of data). For an investigation of these quantities’

impact, two recommender systems are defined by determining the average local prediction

quality Δ in such a way that one system’s mean is constantly 10% better than the mean

of the other system. This constant difference has been chosen following the Netflix

Prize where improvements had to be at least 10% according to a reference. Other

choices for this constant difference will mainly produce equivalent results. Subfigure

4.9a depicts the error probability for two RMSE distributions concerning the average

deviation of prediction and rating together with the impact of the amount N of data.

Here, P = 0.05 has been chosen as the borderline of distinguishability (in accordance

with the significance levels for hypothesis testing). Astonishingly, the error curves are no

constant lines, meaning that the distinguishability is different for two well-performing

recommender systems than for poor-performing ones, even though the difference of the

RMSE’s mean remains the same. Moreover, it can be observed that for N = 50 no

system can be distinguished from another without making an error in less than 5% of

all cases (blue/upper line). For N = 100, for example, only poor systems (Δ > 3.2) can

be distinguished with an error probability of less than 5%. Well-performing systems
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(a) family of error probability curves parametrised by N

(b) family of error probability curves parametrised by σν

Figure 4.9: Sensitivity analysis for the error probability
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(Δ < 1), on the other hand, can only be sufficiently distinguished with at least 2 500

user-item pairs. It is shown, that the influence of the data size has got as much

influence on the distinguishability (i.e. error probability) as on the metric’s variance

itself. Moreover, the convergence of the variance for N → ∞ can be seen, represented

by the fading distance of the curves relative to one another for increasing size of data.

Subfigure 4.9b depicts the error probability for two RMSE distributions concerning

the average deviation together with the impact of human uncertainty for a fixed data

size of N = 1000. It turns out that human uncertainty can significantly shift the

borderline of sufficient distinguishability. For a low uncertainty (green/lower curve),

extremely well-performing systems (Δ < 0.5) can be brought into a ranking with only a

low probability of error. For high uncertainty (red/upper curve), only medium-quality

systems (Δ ≈ 2) can be distinguished through low-error rankings.

In conclusion, the impact of human uncertainty on the distinguishability is remark-

able but also gives the impression of not being as striking as the impact of the data

size. Even with big data, one cannot completely get rid of this problem as the gain

of distinguishability is fading for additional data. Another surprising fact is that two

systems with a relative accuracy difference of 10% can be distinguished and put into a

ranking order only if these are low-quality systems. On the other hand, such systems

cannot be distinguished anymore if they are of high quality, although the relative

difference is still 10%. This indicates that the better recommender systems become, the

more additional improvement is required to recognise a superior system as such with

statistical evidence.

Up to this point, these ranking errors have only been considered within a statistical

theory or in a small experiment with simple recommender systems. However, the

interesting question is whether this phenomenon can be found in more sophisticated

prediction tasks and whether the use of big data minimises the chance of ranking errors.

Therefore, this probabilistic framework is employed to discuss possible ranking errors

for one of the largest recommender system competitions in recent years, namely the

Netflix Prize (cf. Netflix Inc., nd). At this point, it appears to be challenging that

Netflix did not collect any information about human uncertainty. However, for the size

of Netflix’s test record (N = 2.8 · 106), this is not a problem at all since the RMSE’s

variance scales with 1/(2N) which is illustrated in Figure 4.8a. It can be seen that the

specific magnitude of the metric’s uncertainty is much more dependent on the size of
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the data set rather than on the feedback uncertainty itself (compare heights of the grey

area). Indeed, human uncertainty has been estimated for the Netflix Prize in three

different ways and always produced the same result:

1. ML-fitting of human uncertainty based on the RETRAIN study provided an

uncertainty distribution from which random draws were made to be associated

with each rating of the Netflix record (see Fig. 3.7a).

2. Human uncertainty was randomly sampled from different distributions (e.g. uni-

form, triangular, normal) and associated with each rating of the Netflix record.

3. Having a 5-star scale, human uncertainty yields certain limitations. Associating

the minimum or maximum uncertainty to each Netflix rating produces an interval

in which the RMSE’s variance is located.

With Eq. 4.20, each RMSE score in the Netflix leaderboard can then associated with

the average prediction quality Δ that will produce the predefined mean μ = score.

Subsequently, σ2 can be computed using Eq. 4.21 and Δ. This approach will transform

each RMSE score into a random quantity Z ∼ N (μ, σ2). For these distributions, one

can estimate the error probabilities for pairwise rankings using Eq. 4.28.

Table 4.1 lists the error probabilities for the paired rankings within the leaderboard

of the Netflix Prize. The most likely error probabilities can be found in Subtable

4.1a. For example, the decision that the third-placed algorithm is better than the

fourth-placed algorithm is afflicted with an error probability of 25%, i.e. these positions

would swap in one of four repetitions. In the same way, position four to six hold very

high probabilities of error, so that a permutation of these positions is likely to occur in

the light of human uncertainty. An analysis of the positions nine to twelve appears to

be much more remarkable since their errors are approaching the maximum value, i.e.

the entry into the Top 10 (providing glory and honour) is dependent solely on chance

and not on model-based prediction quality. These estimations are so far only based on

point estimated for the feedback variances. However, it has been explained in Sec. 3.4

that these parameters can only be located within confidence intervals. Accordingly,

the error computation could also be done by using the upper bound of the interval

in Eq. 3.4 to obtain the worst case of possible ranking errors. These scores can be

seen in Subtable 4.1b. For this worst case (which is not very likely but still possible),

substantially higher error probabilities can be observed. The decision for recommender
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R1/2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

R1/2 .50 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00

R3 .50 .24 .14 .08 .01 .00 .00 .00 .00 .00

R4 .50 .36 .24 .06 .00 .00 .00 .00 .00

R5 .50 .36 .12 .01 .00 .00 .00 .00

R6 .50 .20 .02 .00 .00 .00 .00

R7 .50 .10 .01 .00 .00 .00

R8 .50 .12 .10 .10 .08

R9 .50 .45 .45 .41

R10 .50 .50 .45

R11 .50 .45

R12 .50

(a) most likely case of error probabilities for pairwise rankings

R1/2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

R1/2 .50 .14 .07 .04 .03 .01 .00 .00 .00 .00 .00

R3 .50 .34 .26 .20 .09 .02 .00 .00 .00 .00

R4 .50 .42 .34 .18 .04 .01 .01 .01 .01

R5 .50 .42 .24 .07 .01 .01 .01 .01

R6 .50 .31 .10 .02 .02 .02 .02

R7 .50 .22 .07 .06 .06 .05

R8 .50 .24 .22 .22 .20

R9 .50 .47 .47 .44

R10 .50 .50 .47

R11 .50 .47

R12 .50

(b) worst case of error probabilities for pairwise rankings

Table 4.1: Estimated error probabilities for pairwise rankings within the leaderboard of the
Netflix Prize when human uncertainty from the RETRAIN record is assumed
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“1/2” (both systems obtained the same RMSE score) to be better than recommender

“3” is subject to a chance of error of about 15%, i.e. this ranking is incorrect in 3 out

of 20 cases. This prominent example demonstrates that the supposed verification of

systems, even under the protection of big data, can sometimes be deceptive and needs

to be rethought against the background of human uncertainty.

4.4 Limitations of System Improvements

A noteworthy property of error probabilities is their functional dependency on the

prediction quality: Two recommender systems with a constant quality difference of 10%

can be distinguished in terms of their RMSEs, insofar they are poor systems (see Fig.

4.9). The better two systems operate on a data set, the more indistinguishable they

become while maintaining a constant difference in quality. This theoretical property

certainly has an impact on the reality of evaluating systems. Considering the Netflix

Prize, already Koren stated

“None of the 3 400 teams actively involved in the Netflix Prize competition

could reach, as of 20 months into the competition, lower RMSE levels, despite

the big incentive of winning a $1M Grand Prize. Thus, the range of attainable

RMSEs is seemingly compressed.” (Koren, 2008, p. 432)

and has thus recognised the manifestation for natural limitations of prediction accuracy.

If this property (i.e. the better the overall performance, the more indistinguishable)

is transferred to the optimisation process of a single system (distinguishability of an

improved product to its predecessor version), then such a high accuracy may be achieved

that the remaining potential of further improvements is just smaller than the required

quality difference for a sound detection. In other words, from a certain quality of

systems, further improvements can no longer be identified without significant doubt.

Hence, there is only one equivalence class of excellent systems. This specific limit is

commonly known in the literature as the magic barrier (cf. Said et al., 2012).

This magic barrier can be described as the minimum of a metric which results for

an optimal recommender system given human uncertainty. For the RMSE in particular,

the magic barrier results from setting Δν := μν − πν = 0 for each user-item pair, i.e.

the difference between prediction and rating is zero on average. Hence, the expected
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Figure 4.10: Example of an RMSE distribution possibly interfering with the magic barrier.
The chance of inference is P (MB > RMSE) ≈ 0.33.

value in Eq. 4.20 becomes

E[MB] ≈
√

1

N

∑
ν

σ2
ν , (4.29)

showing that the magic barrier can be located near the expected value of human

uncertainty which is consistent with the assumption of Hill et al. that a recommender

system can never predict more accurately than the variance of the user responses

considered (cf. Hill et al., 1995, p. 200). Thus, the magic barrier demonstrates the

uncertainty bias for optimal systems and can thus be understood as a background noise

on a particular metric. Consequently, all rankings on the basis of smaller scores are

completely random and the associated systems become completely indistinguishable.

However, it is not a good idea to understand this limit as a sharply localised value since

human uncertainty additionally induces a variance

V[MB] ≈ 1

2N

∑
ν σ

4
ν∑

ν σ
2
ν

(4.30)

according to Eq. 4.21. This means that systems can be interfered by human uncertainty
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even if the expectation of a metric’s distribution has not yet fallen below the magic barrier.

Vice versa, systems with expectation below this specific limit need not necessarily be

interfered by human uncertainty. Figure 4.10 illustrates the interference of the magic

barrier with an example recommender system. Although the RMSE mean is still above

the mean of the magic barrier, there is a significant probability that the RMSE outcome

is already affected. This probability P (MB > RMSE) of interference is simply the error

probability from Eq. 4.28 with μ1 = E[MB] and σ2
1 = V[MB]. At this point, it can be

seen once more that a dichotomous decision criterion (better or worse) is not adequate

for a probabilistic understanding of human behaviour and that all possibilities must be

considered along with their probabilities (i.e. how likely is it that a system can still be

improved and what risk of error is still acceptable?).

As a realistic application, the magic barrier can be calculated for the Netflix Prize.

By estimating the user variances as already done above, the magic barrier can be

determined to MB ∼ N (0.6687, 0.0007). Using the contest winner as a reference, the

interference probability vanishes, i.e. it can be assumed that the magic barrier has

not yet been reached. To be more precise, there is still a potential for about 20% of

improvement when taking the winner as a reference. The existence of this barrier is

particularly relevant when monetary decisions are made regarding the optimisation of

recommender systems, e.g. employee’s efforts or financial resources are invested in an

alleged optimisation process but the results are purely random which remains unnoticed.

For Netflix, the magic barrier may soon be reached within the next few years. From

this point, further costly improvements in terms of optimising the RMSE would simply

make no sense anymore. With this spirit, a differentiated analysis of human uncertainty

according to metrologic models appears as an essential component of future comparative

studies on recommender systems when user feedback is considered.

An extension of this magic barrier is given when the predictor is assumed to be a

random variable as well. This is the case, e.g. for supervised learning where human

beings carry out classification which impacts the prediction of future user behaviour. In

this case, an optimal system would assign the same distribution to the predictor that

will be provided by subsequent user feedback, i.e. a human being is always the best

predictor for himself. Let therefore be Fν ∼ N (μν , σ
2
ν) and πν ∼ N (μν , σ

2
ν) respectively.

The difference is hence given as

Yν := Fν − πν ∼ N (0, 2σ2
ν) (4.31)
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and can be written as Yν :=
√
2σνI where I ∼ N (0, 1). With this substitution, it

follows that

E[Y 2
ν ] = E[(

√
2σνI)2] = E[2σ2

νI2] = 2σ2
νE[I2] = 2σ2

ν (4.32)

V[Y 2
ν ] = V[(

√
2σνI)2] = V[2σ2

νI2] = 4σ4
νV[I2] = 8σ4

ν (4.33)

and the MSE’s statistics are hence given by

E[MSE] =
1

N

∑
ν

E[Y 2
ν ] =

2

N

∑
ν

σ2
ν (4.34)

V[MSE] =
1

N2

∑
ν

V[Y 2
ν ] =

8

N2

∑
ν

σ4
ν (4.35)

Finally, when using the Gaussian Error Propagation, the RMSE for optimal prediction

(which will be denoted as the human barrier in this thesis) is given by

HB ∼ N
(√

2 ·
√

1

N

∑
ν

σ2
ν ,

1

N
·
∑

ν σ
4
ν∑

ν σ
2
ν

)
. (4.36)

It can be seen the expectation of the human barrier is
√
2 times larger than the

expectation of the magic barrier whereas the variance of the human barrier is twice as

much as the variance of the magic barrier. This means that for supervised learning, i.e.

when the predictor is also subject to human uncertainty, the limitation of statistically

sound distinction of two systems is much more restrictive. In other words, the possibilities

for further improvements are much more limited. Another scenario in which the predictor

is also a random variable is given when the recommender system uses human uncertainty

to extend the predictor score. This case will be discussed in more detail in Ch. 5.

4.5 Chapter Summary

Based on the latest research in metrology, the uncertainty of quantities propagates with

respect to a specific mathematical model when composed quantities are computed. In

a probabilistic sense, the composed quantity is distributed by a probability density

which emerges as a convolution of all arguments’ densities. Typical approaches to

determine resulting distributions are analytical derivations, Monte-Carlo simulations as

well as the Gaussian Error Propagation. Transferred to the comparative assessment of

personalisation systems, the results of well-established accuracy metrics turn out to be
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distributions rather than single scores. It can be assumed that it is not uncommon for

two such distributions to have an intersection, resulting in a probability of error when

creating a ranking. This error can be thought like this: Although a ranking according to

the expected values may imply a system A to be better than system B, it does (more or

less frequently) occur that system B even outperforms system A when considering only

single draws from underlying distributions. The frequency for this ranking inversion can

be seen as a probability of error that is associated with each ranking. When this error

probability is too high, there is no sufficient evidence for any possible ranking order

and both systems become undistinguishable by means of a ranking. These limitations

can be thought of as uncertainty-induced barriers. In conclusion, the presented results

reveal that human uncertainty has a great impact on the comparative assessment of

recommender systems. They hence justify an even more differentiated consideration of

user data. Future comparative evaluations of recommender systems may hence require

to account for human uncertainty. Possible strategies for doing so are discussed in the

next chapter.
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The purpose of this chapter is to present a brief overview of existing strategies

for dealing with human uncertainty (subgoal C). The eponymous chapter published

in Jasberg and Sizov (2019) provides the basis for this, although it has received an

extensive revision for this dissertation. In addition to its contents, single sentences

have also been taken verbatim from this work. Moreover, the concept of the so-called

sRMSE was first presented in Jasberg and Sizov (2017a) and was then published in its

analytical form in Jasberg and Sizov (2018a) from where it was copied verbatim.

5.1 Statistically Sound Improvement Detection

One possible solution to improve the handling of uncertainty is to examine its concrete

impact for a given scenario of comparative assessment in reality. Whether two systems

are eventually distinguishable or not deserves to be determined by hypothesis testing

due to the statistical nature of the phenomenon.

Such a test has already been illustrated in the last chapter when considering the

Netflix Prize. At this point, the above-mentioned test is to be explained in general

and an applicable short form is to be derived: Let z1 and z2 be two realisations from

Z1 and Z2 representing the results of two distinct systems’ accuracy metrics. Both

random variables are then determined by Zk ∼ N (zk, σ
2) where σ is obtained from

uncertainty propagation based on the score itself and the size of the data set. For
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smaller improvements of a system where distinguishability matters, the dependence

of σ2 on the score itself can be neglected. A rough estimate can then be taken from

Figure 4.8a and has been proven to be reliable for big data scenarios in the previous

chapter. Moreover, it can be assumed that the standard deviation is equal for each

Zk as long as all systems operate on the same data set. The relationship Z1 < Z2 can

then be assumed to hold with a significance level of α if the opposite case occurs with a

probability P (Z1 ≥ Z2) ≤ α (type I error). By rewriting z1 = z2 + h with h ≥ 0 and

using the identity from Eq. 4.28, it follows that

P (Z1 ≥ Z2) = Φ

(
z1 − z2√

2σ

)
= Φ

( −h√
2σ

)
≤ α ⇔ h > −

√
2σΦ−1(α). (5.1)

This means that both systems are distinguishable with a significance level of α if

the difference of both metric scores is at least −√
2σΦ−1(α) where Φ−1 is the inverse

cumulative distribution function for the standard-normal distribution. Considering the

common case of α = 0.05, the difference has to be h > 2.33σ for a significant detection.

Another approach is to shift the magic barrier along the x-axis of metric scores

and test whether it is possible to cover both metric results z1 and z2 within the

95% confidence interval I95. Heuristically explained, two metric scores can not be

distinguished by means of the relation Z1 < Z2 if there exists a single solution (i.e.

a probability density) which can explain both outcomes (i.e. draws) with sufficient

significance. In other words: For α = 0.05, both scores z1 and z2 = z1 + h must not

exceed the I95 interval which has the length �(I95) ≈ 4σ. This implies that both scores

must differ by at least h > 4σ to avoid being explained by a single model. For an

arbitrary level of significance α, one has to find a > 0 so that I1−α = [μ− aσ ; μ+ aσ].

Since the shifted magic barrier X is assumed to be normally distributed, it follows that

P (μ− aσ ≤ X ≤ μ+ aσ) = FX(μ+ aσ)− FX(μ− aσ)

= Φ(a)− Φ(−a)

= erf(a/
√
2) (5.2)

Accordingly, the I1−α interval covers the probability mass 1 − α = erf(a/
√
2) which

implies a =
√
2 erf−1(1− α). For a statistically sound distinguishability, both scores z1

and z2 = z1 + h must hence differ by h > �(I1−α) = 2aσ = 2
√
2σ erf−1(1− α).

It is noteworthy that both tests exhibit a different sensitivity which is due to their

structural design. The first approach works by considering the intersection of two
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densities and the second approach tries to find a translation of one density so that both

scores are within a certain confidence interval. For the special case of α = 0.05, the first

approach can detect even smaller differences than the second approach. In particular,

differences between 2.33σ < h < 4σ can be detected by the first approach but not by

the second approach. On the other hand, the second approach avoids the assumption

that given metric scores represent the mean values of two distinct distributions. Overall,

both approaches involve the challenge of estimating the standard deviation of the metric

distribution which is computationally cumbersome if human uncertainty has not been

measured (cf. Netflix Prize considerations). Accordingly, these test methods can only

represent a mere estimate of potential distinguishability in the absence of uncertainty

information. They should not be misunderstood as a substitute for the need for a proper

uncertainty measurement for the individual use case.

5.2 Improvement by Subsequent Uncertainty Reduction

Another approach to improve the negative aspects of human uncertainty is to artificially

reduce it through additional processing steps.

Pre-processing steps. A prominent example of de-noising algorithms has been

introduced in Amatriain et al. (2009b) and has already been mentioned in Ch. 2. The

test setup included three different rating trials, in which 118 users had to rate 100

film titles on a scale of 1 to 5 stars using a web interface. Human uncertainty was

thereby gathered via re-rating: The second rating trial was conducted 24 hours after

the first trial and the third rating trial was conducted 15 days after the second trial

(cf. Amatriain et al., 2009a, pp. 249–250). It has been found that “the calculated

RMSE between different trials ranged between 0.557 and 0.8156 [sic!]” (Amatriain

et al., 2009a, p. 257). To tackle this issue, Amatriain et al. introduced a de-noising

algorithm which recursively replaces repeated ratings with large scattering (i.e. above

an arbitrary threshold) by artificial ratings with smaller scattering (cf. Amatriain et al.,

2009b, p. 175). The authors achieved an improvement above 14% compared to the

original RMSE (cf. Amatriain et al., 2009b, p. 180). Heuristically, human uncertainty is

artificially limited by manually replacing real data with smaller (but fictive) deviations.

Of course, this reduces the uncertainty of the RMSE and thus the corresponding bias

of its mean, leading to better RMSE scores. The main issue with this approach is
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that data is subsequently manipulated (without a real basis) until the desired result is

achieved. If an uncertain quantity is measured and then the uncertainty is replaced by

a smaller one, the true extent of uncertainty remains the same while not being properly

detectable any longer. In other words, one just considers other data than it exists in

reality. For this reason, it can be assumed that the stated improvement is only virtual

and does not reflect reality.

Partially omitting data. Another idea is to modify existing accuracy metrics to

make them sensitive to human uncertainty. In other words, each time a rating is

compared with a model-based prediction, it is necessary to examine whether the

observed deviations are significant or whether they are simply due to human uncertainty.

This involves dividing the set of all deviations into two subsets: One subset contains all

deviations around a predictor πν which can be considered as being caused by human

uncertainty. The other subset contains all deviations whose extent cannot be explained

by this uncertainty and which therefore appear to be induced by the prediction model

itself. In this case, it seems practicable to calculate the quality metric by considering

only those deviations that are related to the algorithm and not to human uncertainty.

This idea will be exemplified using the RMSE: Following the argumentation above, it

seems appropriate to employ statistical hypothesis testing to decide whether a realisation

fν of a feedback distribution Fν is equal to a model-based prediction πν or not. In

mathematical notation, one has to test H0 : xν = πν vs. H1 : xν �= πν at a given

significance level of α. For known density functions, the region of rejection can be

constructed as the complement I �
1−α of I1−α = [πν − a ; πν + a] where a > 0 is chosen

to satisfy ∫ πν+a

πν−a
fFν (t) dt = 1− α. (5.3)

The assumption of normality for each user feedback Fν allows further simplification

according to Eq. 5.2 from which follows that a =
√
2 erf−1(1−α). While the traditional

RMSE density constitutes as a convolution of all fFν (t) through a mathematical model,

the density of the modified RMSE emerges as a convolution of restrictions

fFν

∣∣
I �
1−α

(t) := II �
1−α

(t) · fFν (t) (5.4)
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Figure 5.1: Comparison of error probabilities computed with the RMSE and sRMSE

where I represents the indicator function

IA(t) :=

⎧⎨⎩1 if t ∈ A

0 else
(5.5)

Since being similar to the traditional RMSE, the modified metric will be referred to

as the significant RMSE (sRMSE). The sRMSE guarantees a comparison between

different systems with much lower probability of error. This is achieved by excluding

the stabilising centre of all feedback distributions. More precisely, because the RMSE

amplifies the remaining extremes by its quadratic term (cf. Eq. 4.1), the resulting

distributions differ rapidly with increasing false predictions.

Using this algorithm along with a confidence level of α = 0.05, the respective error

probabilities have been computed for two fictitious systems with an arbitrary average

prediction quality Δ along with a constant accuracy difference of 10%. This is exactly

the same simulation setup as previously employed to generate Fig. 4.9. The results

of this new simulation are depicted in Fig. 5.1. It is obvious that the error curve
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drops significantly faster for the sRMSE than it does for the RMSE and thus falls

below the critical limit of 5% much earlier. This means that by using the new metric

sRMSE, better systems can still be distinguished significantly whereas an evaluation

using the RMSE already produces indistinguishability. The discrimination between

deviations that can be explained by human uncertainty and those that can not be

explained, respectively, may be understood as some kind of sensitisation of a metric

to this phenomenon. This may indicate that human-like metrics can be regarded as

fruitful for future system evaluation. However, this sensitivity is based on computing

accuracy metrics with those 5% of deviations that are large enough. In other words,

this approach denies 95% of the available data which may not always be in accordance

with real user behaviour. Another shortcoming is that all problems of distinguishability

are only diminished but still existent.

5.3 Uncertainty as Information Source

The methods from the last section essentially considered human uncertainty as unde-

sirable and modelled it with the objective of elimination. However, the possibilities of

extracting additional information have only insufficiently been considered so far. In this

section, new ideas are presented that aim to benefit from human uncertainty.

Clustering Uncertainty. Sizov notes that systems nowadays describe the behaviour

of an entire community well but cannot explain individual behaviour at the same time

(cf. Sizov, 2017b, p. 869). Against this background, the author presents an approach

with the aim “to collect additional information about individual users [i.e. uncertainty

information in this case], and to include gained knowledge into adjusted mixture models”

(Sizov, 2017b, p. 876). Such a mixture model can be defined as

f(x) =
∑K

k=1 pk · fk(x, θk) (5.6)

where K is the number of components in the mixture, fk represents the individual

group density parametrised by θk, and the coefficients 0 ≤ pk ≤ 1 can be considered

as component probabilities satisfying
∑K

k=1 pk = 1 (cf. Sizov, 2017b, p. 871). The idea

behind using mixture models is that for each user behaviour that cannot be explained by

a global distribution (i.e. a global model in the terminology of Sizov), another distribution

can be added. This will theoretically lead to a family of different distributions, which
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in sum can describe any individual user behaviour. This argumentation is supported by

Bishop who explains:

“By using a sufficient number of Gaussians [as group density functions],

and by adjusting their means and covariances as well as the coefficients in

the linear combination, almost any continuous density can be approximated

to arbitrary accuracy.” (Bishop, 2006, p. 111)

In principle, the problem of user explanation can be solved by adding another component

to this mixture model for each user action, which then again strongly increases the model

complexity. To find an optimal trade-off between complexity and fitting quality, so-called

information criteria are usually employed (cf. Bishop, 2006, pp. 32–33). Following Sizov,

the commonly employed “information criteria do not account for micro level of individual

user behaviour and thus may under-estimate the necessary number of components in

favor of a less complex solution” (Sizov, 2017b, p. 873). The author’s solution is to

‘humanise’ the information criteria (as a function of K) by multiplying them by the

relative frequency of observations that would not be explained by a K-component

model. This is exemplified for the Deviance Information Criterion (DIC) by using the

transformation

HDIC(K) := DIC(K) · hreject(K) (5.7)

in order to obtain the Human Deviance Information Criterion (cf. Sizov, 2017b, p. 873).

At this point, hreject(K) represents “the fraction of individual per-user observation [...]

that falsify the global model in the sense of common hypothesis testing procedures (such

as KS-test)” (Sizov, 2017b, p. 873). On a self-collected data set including uncertainty

information, Sizov could show that this new model indeed creates a new (corrected)

trade-off between complexity and individual user explanation: While the traditional

DIC suggests a global model with only one component (which does not explain 38% of

all observations), the HDIC points to 4 or 5 components (which reduces the failure of

explanation to 3% or 0%, respectively), depending on the chosen significance level of

the underlying hypothesis test (cf. Sizov, 2017b, p. 875). Moreover, the identified groups

represent interpretable characteristics in terms of rating behaviour and uncertainty:
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“By inspecting the model, we observe a significant fraction of ‘uncertain’

users with high variance and ratings in the middle of the scale (component

3). At the same time, two further fractions of users tend to assign ‘mostly

negative’ or ‘mostly positive’ scores with reasonably high variance (com-

ponents 1 and 5). In addition, the model highlights the presence of small

fractions of ‘focused’ users, with low decision variance and ‘below average’

vs. ‘above average’ rating behaviour (components 2 and 4).” (Sizov, 2017b,

p. 875)

Briefly summarised, the consideration of uncertainty allowed a comparison of the

resulting feedback distributions with a global model. This allowed overcoming the

situation that too simple models were constructed which did not reflect the observations

of user behaviour. Also, frequently recurring behaviour patterns have been identified

which may be used to modify future recommendations. These results indicate that the

consideration of human uncertainty not only causes negative effects but is also a useful

source of information which can be easily exploited in systems.

Clustering local Barriers: Another idea to make use of human uncertainty was

introduced in Said and Bellogín (2018). The essence is to calculate the coherence of a

user within an attribute space (e.g. a film genre). For example, a coherent user would

rate all horror films equally while an incoherent user would exhibit more variation

within this genre. For this purpose, the author conducted an online experiment with

308 users who repeatedly rated 2 329 films in two separate trials (cf. Said and Bellogín,

2018, pp. 104–105). It has been found that the user coherence is correlated with the

magic barrier and that this correlation can be used to discriminate between easy users

and difficult ones (cf. Said and Bellogín, 2018, p. 97). By systematically composing

the learning set and the test set with different proportions of simple and difficult users

for a sample recommender system, it was found that it is possible “to build different

training (and test) models in such a way that the error decreases for the easy users,

i.e., to increase the accuracy of the recommender system” (Said and Bellogín, 2018,

p. 117). The authors were able to show that the RMSE could be improved by 10 to 40%,

depending on the number of difficult users in the training set (cf. Said and Bellogín,

2018, p. 121). At this point, it has been demonstrated that very good improvements

can indeed be achieved by using a more human-like user model.
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5.4 Chapter Summary

This chapter has shown that there are currently three basic ways of dealing with human

uncertainty and its side effects: The first approach refers to the subsequent reduction of

measured uncertainty. However, these methods are questionable as they no longer reflect

the existing reality. A consideration of uncertainty is only supposedly carried out. The

second approach no longer disguises human uncertainty but accepts its presence and

investigates whether it affects a given use case when there is no particular uncertainty

information available. Then again, these are only rough estimates and do not replace a

proper uncertainty measurement. Accordingly, this is unlikely to be a viable solution

for the future and motivates to explore further alternatives. The third approach is

about turning uncertainty into a benefit by exploiting the additional information. The

ideas presented are very promising and demonstrate that user model tuning offers

great potential, both for prediction accuracy as well as for user insights with which

predictions can be individually corrected. Nevertheless, these approaches are merely

statistical and technical procedures that capture human nature only phenomenologically.

This represents just an external perspective, so another solution might be to take the

perspective from within. Human uncertainty from an inner perspective, i.e. on the basis

of human cognition as represented in theories of psychology and neuroscience, should

therefore be examined more closely. Indeed, a few machine learning techniques (e.g. NN,

rNN, HTM, etc.) have benefited from neuroscience by adopting some of its foundational

ideas. For the case of human uncertainty, a comparison between the results of the

internal and the external perspective may perhaps provide new insights about the future

design of recommender systems as well. However, this would require an adequate object

of comparison which represents the internal perspective. Such an object of comparison

will be developed in the next chapter.
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The purpose of this chapter is to introduce an adequate cognitive model to (1)

substantiate the assumption of a human-inherent origin of unreliable user feedback and

(2) to discover potential benefits for user explanation and recommendation. The very

first results of this research have been published in my work Jasberg and Sizov (2018b).

From this publication, the description of the probabilistic population codes (Sec. 6.3)

was taken almost verbatim. Likewise, a large proportion of verbatim text segments can

be found in the description of the user model (Sec. 6.4) and the parameter boundaries

(Sec. 6.5) respectively. However, the material has undergone an extensive linguistic

revision for this dissertation and has been subject to substantial extensions.

6.1 Modelling Theory and Epistemology

Models are widely used in natural science, especially in physics. Accordingly, these

models are in the focus of epistemological discussions in the respective scientific fields. In

physics, for example, Kircher et al. define a model as a mental or a material object that is

101



CHAPTER 6. A NEUROSCIENCE MODEL OF HUMAN UNCERTAINTY

used as a substitute for an original (cf. Kircher et al., 2009, pp. 732–733). It is by nature

a simplification of the original or reality (cf. Kircher et al., 2009, pp. 741–743) and thus

enables a mathematical description (cf. Kircher et al., 2009, p. 753). For this reason, the

model must match some (but not all) features with the original (cf. Kircher et al., 2009,

pp. 741–743). Accordingly, a model is neither right nor wrong but only suitable for a

particular purpose or not (cf. Kircher et al., 2009, pp. 736, 754). The cybernetic concept

of modelling pushes this definition forward and explicitly discusses the involvement of

human beings, i.e. there is a mutual dependency of the real object O to be modelled,

the model M itself and the addressee which is called the subject S (cf. Kircher et al.,

2009, p. 737). The dependency M -O is characterised by epistemology, scientific methods,

and repeated cycles of induction and deduction (cf. Kircher et al., 2009, pp. 739–742).

The relationship to the subject S is characterised by group-specific conventions of

modelling, the kind of simplification (scientific standards of the community), or by

useful representations for explanatory approaches or learning processes (cf. Kircher

et al., 2009, pp. 745–758). The subject or rather the addressee (here: the scientific

community) along with its needs and ideas of science directly influences the perspective

on the real object as well as the act of modelling and thus the model itself (cf. Kircher

et al., 2009, pp. 745–758).

For this thesis, human uncertainty is the object to be modelled or, to be more

precise, it is the complex cognitive process that leads to this phenomenon. The subject

can be either the community of (computational) neuroscience or the community of

predictive data mining and recommender systems. Based on the previous research done

in this thesis, it is only consistent to decide for the latter community. On the one hand,

the scientific standard of modelling is quite simple for this community: According to

Weiss and Indurkhya, a possible model is adequate for describing human behaviour if

it generates recommendations for items or products that users like, i.e. if this model

optimises accuracy metrics (cf. Weiss and Indurkhya, 1998, p. 36). On the other hand,

this standard is exactly what has been reasonably questioned in the previous part of this

thesis and hence cannot serve as a standard for evaluating a model in the second part

of the same thesis. This standard must hence be slightly modified: A cognitive model

of human uncertainty should provide a verifiable positive benefit for the community as

it is created for the very same. Two obvious benefits of a cognitive uncertainty model

would be
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R1 the adequacy for predicting the entire feedback distributions, especially human

uncertainty in terms of variance and

R2 the simplicity of integration into existing machine learning algorithms and other

data science techniques.

These benefits also serve as the first two model requirements. In short, the benefit

to the community is the ability to provide a holistic view of human feedback in

existing systems without major adjustments. This in return enables to realistically

estimate human uncertainty, its genesis dependent on time and content, and its technical

processing within information systems. Possible advantages of a holistic prediction

of human uncertainty are statistically sound comparisons (cf. Ch.4), in-depth user

insights (cf. Sizov, 2017b), better learning strategies (cf. Said and Bellogín, 2018), and

new opportunities for system design, e.g. “when picking among several items with the

same expected rating, the system can favor the item for which the confidence in the

prediction is greatest” (Koren and Sill, 2011, p. 123). Of course, these are only the

minimum requirements. Additional requirements could be, e.g. runtime efficiency as well

as the efficiency of computational resources. However, this thesis is supposed to focus

exclusively on a proof-of-concept and leave further enhancements to further research.

According to these criteria, one does not necessarily need a neurological model.

The idea of developing such a model is to obtain information from a possible and

human-inherent way of information processing that may eventually lead to system

improvements and a better understanding of human beings at the same time. In doing

so, it is essential to ensure that this model indeed reflects a ‘true’ cognition process. This

entails two major challenges: First, it must be emphasised once again that this model

can only be a simplified mathematical construct and must not be put on a par with

reality and the ultimate truth. In this respect, Kircher argues that explanations through

a model are not about the ‘why’ but rather about the possible ‘how’ (cf. Kircher et al.,

2009, p. 754). Second, such a model can virtually not be proven without doubt regarding

neuroscience research, since this thesis does not consider the relevant measurement

approaches (e.g. electroencephalogram, magnetic resonance imaging, positron emission

tomography, etc.) or any anatomical structures of the human brain. But against this

background, how can it then be examined whether such a model is indeed close to ‘real’

human cognition? One possible approach is the implicit validation by comparing the

model’s implications with recent findings in medical or neuroscientific publications. This
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approach is supported by the fact that explanations through models should never be

understood locally but have to be considered against the background of other prevalent

models, common assumptions, and obtained data (cf. Kircher et al., 2009, p. 754).

Therefore, the criteria for model adequacy concerning cognition and decision-making

can be summarised by the following requirements:

R3 Model implications are supported by medical and neuroscience research.

R4 There is a reasonable integration of other common neuroscientific models.

R5 The model itself is internally consistent.

In conclusion, it can be said that – in concordance to the main objectives of this

chapter – the model adequacy has to be examined explicitly for the community of

predictive data mining but also has to include validation in the light of epistemology.

The latter ensures that, at least hypothetically, a model is created that indeed considers

human uncertainty from an inner perspective. This cognitive model can then be

compared to a purely behavioural model, i.e. a model that is founded on mere human

observation rather than on assumed human-inherent processes. From this comparison,

conclusions may be drawn for the future design of (more) human-like systems.

6.2 Finding Adequate Models

In this section, a neuroscientific model is presented that will probably explain human

uncertainty as it has been measured in Ch. 3. Surprisingly, several months of intensive

literature research revealed only a single model that seemed up to the task. This should

not be taken as a proof that this is the only suitable model. Rather, the continued

search for any other suitable model was simply not successful. Therefore, the path of

enquiry will be described that finally led to this particular model used henceforth. In

doing so, the adequacy of this model will explicitly be emphasised for the case of user

response behaviour. This will shed light on its biological plausibility and credibility for

naturally reducing human uncertainty to neuronal mechanisms.

A particular difficulty in interdisciplinary literature enquiries is that the phenomenon

of human uncertainty – and the term uncertainty in particular – has different meanings

within different research areas. At this point, the most important examples for this

chapter should be mentioned:
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Metrology: “The word ‘uncertainty’ means doubt, and thus in its broadest sense

‘uncertainty of measurement’ means doubt about the validity of the result of a

measurement. Because of the lack of different words for this general concept of

uncertainty and the specific quantities that provide quantitative measures of the

concept, for example, the standard deviation, it is necessary to use the word

‘uncertainty’ in these two different senses. [...] The formal definition of the term

uncertainty of measurement [...] is as follows: uncertainty (of measurement) [is a]

parameter, associated with the result of a measurement, that characterizes the

dispersion of the values that could reasonably be attributed to the measurand.”

(JCGM, 2008a, p. 2)

Decision Theory: “Uncertainty in this context refers to a state in which the probability

of the result of selecting an alternative is not known. Decision-making under

uncertainty can be sub-classified as follows [...]. The first group is decision-making

under ambiguity. This ambiguity refers to a state in which, although the condition

and results that will occur are known, the probabilities of the condition and

results to occur are unknown” (Takemura, 2014, p. 8). “The second category [...]

is decision-making under ignorance when the elements of the set of states or the

elements of the set of results are unknown [or not clearly known]” (Takemura,

2014, p. 9).

Neuroscience: Here, two types of uncertainty are distinguished: “Animals are con-

stantly faced with the challenge of interpreting signals from noisy sensors [i.e.

uncertainty type 1] and acting in the face of incomplete knowledge about the

environment [i.e. uncertainty type 2]. A rigorous approach to handling uncertainty

is to characterize and process information using probabilities” (Doya et al., 2007,

p. 239). Yu and Dayan propose “that the neuromodulators acetylcholine and

norepinephrine play a major role in the brain’s implementation of these uncer-

tainty [computations]” (Yu and Dayan, 2005, p. 682). Friston confirms that “the

most obvious candidates [...] are classical neuromodulators like dopamine and

acetylcholine" (Friston, 2010, p. 132).

Information Theory: “Entropy is a measure of the uncertainty or surprise associated

with a stochastic variable, such as a stimulus” (Dayan and Abbott, 2001, p. 28 of Ch.

4). The concept of information theory is frequently used in theoretical neuroscience
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and therefore mingles with the vocabulary of this research area. Friston argues

that each mammal (including human beings) tries to reduce surprise and that

a cognitive “density with low entropy means that, on average, the outcome is

relatively predictable” (Friston, 2010, p. 127). The more predictable an outcome

is, the less uncertainty it has for the respective mammal.

Given this variety of different definitions and terminology, it is very difficult to

gather information about the previously described phenomenon of human uncertainty.

Apart from that, the above definitions are the result of a systematic and thorough

literature study. The very first enquiry mainly revealed content applying the definition

of decision theory which did not seem expedient in the context of the present thesis.

The focus was hence changed towards the description of internal distributions within

decision-making, as this is an implication of human uncertainty. In doing so, the work

of Karl Friston has been found which contributes to the Bayesian brain hypothesis.

This hypothesis represents

“the idea that the brain uses internal probabilistic (generative) models

to update posterior beliefs, using sensory information, in an (approximately)

Bayes-optimal fashion.” (Friston, 2010, p. 129)

The essence of this hypothesis is that the (human) brain uses probability distributions

to represent the world internally. The existence of such internal distributions has

been postulated earlier in this dissertation. It will be demonstrated later that several

indications indeed point to the appropriateness of the Bayesian brain hypothesis. Friston

focused on how the brain learns to predict its surrounding world with high accuracy:

“The underlying idea is that the brain has a model of the world that

it tries to optimize using sensory inputs. [...] Central to this hypothesis is

a probabilistic model that can generate predictions, against which sensory

samples are tested to update beliefs about their causes [i.e. to minimise

prediction error].” (Friston, 2010, p. 129)

This assumption is logically sound since the correct interpretation and prediction of

the world is crucial to survival. Such a generative model which is able to continuously

update prior beliefs about states of the world (i.e. perceived parts of reality or entities

of the world) with sensory input is introduced in Friston (2010). The key element of
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this generative model is entropy (here: surprise or prediction error) and the information-

theoretic concept of free energy optimisation (as an upper bound of entropy).

Although a theory has been found in which internal probability distributions are as-

sumed and which provides information-theoretical concepts for modelling, two problems

arise for the application to human uncertainty. The first problem is the fact that this

theory describes learning from perception rather than decision-making. However, Friston

has provided further hints for transferring this theory to the case of decision-making:

“The basic idea is that behavior can be cast as inference: in other words,

action, and perception are integral parts of the same inferential process and

one only makes sense in light of the other.” (Friston et al., 2013, p. 2)

This statement clarifies that behaviour as the direct manifestation of preceding decision-

making can also be understood in the light of the Bayesian brain hypothesis. Accordingly,

it can be assumed at this point that the feedback behaviour of users along with human

uncertainty has a Bayesian counterpart within the cognitive process. Despite this

statement, Friston’s work does not contain any information or specifications that

lead to a formal model to build upon. The second problem so far is that internal

distributions (even when they are assumed for decision-making) do not necessarily

contradict determinism. For example, the proposed Maximum-A-Posteriori approach

will always give the same value for a given prior and likelihood. This leads to the

conclusion that either the computational process based on constant distributions is

unreliable or the representation of such distributions itself must be statistical rather

than deterministic. As already stated above, Friston and others ascribe the biological

modulation of uncertainty (represented by a density’s width) to neurotransmitters such

as acetylcholine, noradrenaline (cf. Yu and Dayan, 2005, p. 682), and dopamine (cf.

Friston, 2010, p. 132).

Therefore, the next step was to initiate further investigations in neuroscience litera-

ture using the keywords “behaviour variability” and “neurotransmitters”. This quickly

revealed the work of Faisal et al. which describes the genesis and exploitation of noise

in the nervous system. It is noteworthy that this contribution implicitly suggests a

causality between behavioural variability and neuronal noise:

“Variability is a prominent feature of behaviour [and] in perception and

action [it] is observed even when external conditions, such as the sensory
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input or task goal, are kept as constant as possible. Such variability is also

observed at the neuronal level.” (Faisal et al., 2008, p. 292)

For the very first time during the literature study, a description was found that is consis-

tent with the observed phenomenon of human uncertainty. By the short consecutiveness

of two supposedly distinct phenotypes, Faisal implicitly insinuates a correlation between

behavioural variability under constant externals on the one hand and the so-called

trial-to-trial variability of nervous cells on the other. Trial-to-trial variability in this

context paraphrases “the differences between [neuronal] responses that are observed

when the same experiment is repeated in the same specimen (for example, in the same

neuron or the same subject)” (Faisal et al., 2008, p. 292). It is indeed remarkable that

a repetition of the same task reveals a variability of behaviour and, at the same time,

the same trigger in the case of recurrence never leads to the same neuronal responses.

This correlation yields a sense of causality when remembering that neuronal responses

are ultimately responsible for a particular behaviour. Faisal et al. continue with this

chain of causality and discuss the origin of trial-to-trial variability. The culprit is swiftly

found to be noise in the nervous system which originates from various mechanisms, i.e.

• motor noise (cf. Faisal et al., 2008, p. 293),

• sensory transduction and the non-deterministic amplification of sensory inputs

(sensory noise) (cf. Faisal et al., 2008, p. 293),

• random opening of voltage-gated ion channels located on excitable membranes

as well as specific network structures of neurons (cellular noise) (cf. Faisal et al.,

2008, p. 293),

• biological constraints which lead to a differential release of neurotransmitters

(synaptic noise) (cf. Faisal et al., 2008, p. 293).

Having these observed mammal-inherent properties in mind, it is argued that “small bio-

chemical and electrochemical fluctuations [...] can significantly alter whole-cell responses”

(Faisal et al., 2008, p. 294). The rationale behind this is that “when the membrane

potential is near the firing threshold, the generation of an AP becomes highly sensitive to

noise” (Faisal et al., 2008, p. 294). The abbreviation AP stands for action potential and

means a temporal change in a membrane’s local electric field which propagates along a

neuron’s axon and ultimately leads to neuronal responses and information transmission
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(cf. Bear et al., 2018, pp. 83–110). After this comprehensive line of argumentation, Faisal

converts the previously expressed implicit correlation between behaviour and neuronal

characteristics into an explicit conjecture of causality that has long been suspected:

“Noise is an inescapable consequence of brains operating with molecular

components at the nanometer scale, sensors that are sensitive to individual

quanta and complex networks of noisy neurons that generate behaviour.”

(Faisal et al., 2008, p. 300)

Although this could be seen as a disruptive factor in information transmission, Faisal

emphasises that there are ample benefits related to neuronal noise. For example, a

certain level of noise can be used to detect and transmit weak signals within neural

circuits which has been directly demonstrated in human balance control (cf. Faisal et al.,

2008, p. 294). Friston even assumes that this noise is deliberately used by the brain

to represent probability densities qua neuronal activity adjustment and the formation

of specific connection strengths (cf. Friston, 2010, p. 129). This idea is also discussed

positively by Faisal:

“Psychophysical experiments have confirmed that humans use these

Bayesian inferences to allow them to cope with noise (and, more generally,

with uncertainty) in both perception and action. However, the neural

mechanisms that are involved in Bayesian computations are unknown. One

idea is that neurons encode probabilities or beliefs about the state of the

world and this concept has been incorporated into Bayesian models of

neuronal population codes.” (Faisal et al., 2008, p. 299)

This backlink to the Bayesian brain hypothesis provides additional references for

further investigation, i.e. the keyword ‘neuronal population codes’. A search query for

these keywords exposed mainly the work of Alexandre Pouget and his probabilistic

population codes (PPC). It is a mathematical model that explains the formation of

internal probability distributions based on neuronal noise. Unlike Friston’s generative

model, the PPC approach is not a theory on updating prior probabilities but rather

describes the cognitive occurrence of estimates or predictions (of states of the world).

The first thing that is striking about this model is that it is capable of unifying all the

seemingly different definitions of uncertainty mentioned above. This is made clear by

the following example:
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“For instance, imagine hiking in a forest and having to jump over a

stream. To decide whether or not to jump, you could compute the width of

the stream and compare it to your internal estimate of your jumping ability.

If, for example, you can jump 2m and the stream is 1.9m wide, then you

might choose to jump. The problem with this approach, of course, is that

you ignored the uncertainty in the sensory and motor estimates. If you can

jump 2± 0.4m and the stream is 1.9± 0.5m wide, jumping over it is very

risky – and even life-threatening if it is filled with, say, piranhas.” (Ma et al.,

2006, p. 1432)

From the perspective of decision theory, jumping or not is a decision under uncertainty.

A person does not know the stream width and the own jumping abilities with absolute

certainty and hence has to rely on guessing. From the metrology viewpoint, one regards

this uncertainty (or guessing) in the form of a probability density over the range of

possible outcomes. From the neuroscientific point of view, it is exactly this probability

density that is supposed to be represented by neuron populations (i.e. agents). According

to Friston, the brain is indeed organised in agency and each of these adaptive agents has

to focus on a limited amount of states of the world (cf. Friston, 2010, pp. 2–3). For the

example above, a person would employ single agents for the stream width and jumping

width, respectively. Each agent would deliberately employ noise to form probability

densities that can be evaluated in a Bayes-optimal fashion to finally make a decision

under uncertainty. From the perspective of information theory, if one decides to jump,

then getting wet would be a surprise (high entropy) and due to the tendency of entropy

minimisation one would adjust the prior probability for upcoming decisions (memory).

As can be seen from this example, these estimation agents can be deemed as some kind

of adhesive between the individual disciplines related to uncertainty.

This reveals the conviction of Ma et al. that probabilistic population codes indeed

constitute the neuronal representation of decision-making in a case in which crucial

facts are missing and have to be guessed or inferred by internal probability distributions.

This has implicitly been elaborated in the first half of this dissertation: People make

decisions about personal preferences, but they lack a solid evidence base in the form

of standardised and measurable variables they can rely on. So there is uncertainty

about this quantity and each person has to use an individual estimate which, in case of

repetition, exhibits the existence of an internal probability density. Even the assumption
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that user feedback has multiple dimensions (e.g. quality, usability, ergonomics, price,

etc.), which are aggregated into a single estimation, is supported and even proposed by

this model through agency. Most importantly, those agents along with their ability to

form and pass internal probability densities have been purely fictitious until now and

are being concretised for the first time by Pouget’s PPC model.

The findings of the previous literature research convincingly indicate a neuronal

mechanism that could indeed be transferred to the observed case of human uncertainty.

As a potential disadvantage, it should be mentioned that this model is demonstrated

and proven solely by sensory perception and motor control. This is not because such

mechanisms cannot be applied to higher cognition (the opposite is illustrated by the

example above) but because decision-making can hardly be measured neurologically

and the explicit train of thought cannot be controlled in laboratory settings. Neverthe-

less, this example implicitly reflects the belief of neurologists that the Bayesian brain

hypothesis can be applied to the uncharted field of decision-making and that the brain

may generate estimates using the PPC approach.

But how do those probabilistic population codes work? This question will be

thoroughly answered in Sec. 6.3 and Sec. 6.4 using mathematical descriptions. Therefore,

a more verbalised explication along with an introduction to the most basic ideas will be

given at this point. Preceding to every neuronal response, there is a so-called excitation

variable or stimulus that causes neuronal activity. For the case of decision-making, this

excitation variable is not an external quantity which is recognised by sensory perception

but rather an internal quantity, virtually a hidden variable in terms of Bayesian modelling.

This hidden variable is also substantially embedded within Friston’s generative model

(cf. Friston, 2010, p. 128). A crucial point is that this excitation variable or stimulus

(i.e. the cause of neuronal responses) can be almost anything:

“In probabilistic models, the variable s [denoting the stimulus] is referred

to as a latent variable (the width of the [river] in the previous example) or

[...] a set of latent variables [...]. Note that latent variable is a broad term

and need not refer to concrete quantities in the outside world. In motor

control, s can be a goal ([e.g.] reaching an object at a particular location),

and, in the cognitive domain, it can be relational structures, such as who in

our circle of friends gets along with whom.” (Pouget et al., 2013, p. 1171)
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In other words, this excitation variable or stimulus is a metaphor that is needed

to initiate neuronal activity within an artificial system to satisfy causality (i.e. cause

and effect). However, there is a biological counterpart to this. When thinking about

an estimation to be made or user feedback to be provided, something indeed triggers

the necessary thinking process and induces neuronal activity. Finally, it is exactly this

activity that represents a probability density over the range of possible activity causes:

“Put simply, although agents can never know the causes of their [activations], the causes

can be inferred” (Friston et al., 2013, p. 3). To stay in concordance with the scientific

literature about the PPC model, this internal excitation variable will henceforth be

denoted as the stimulus which is the original terminology of Pouget.

For a given stimulus, a neuron responds with a specific spiking frequency which is the

number of action potentials within a defined time interval (cf. Dayan and Abbott, 2001,

p. 12 of Ch. 1). A variation of the stimulus (e.g. direction of motion or wind direction)

will demonstrably lead to a change of a neuron’s response (cf. Dayan and Abbott, 2001,

pp. 12–14 of Ch. 1 in addition to pp. 3–4, 12–14 of Ch. 3). It therefore makes sense

to understand the neuronal response r as a function of the stimulus attributes s and

in fact, it is possible to find such functional dependency r = f(s) in many cases. This

mapping f is referred to as the tuning curve (cf. Dayan and Abbott, 2001, pp. 12–15

of Ch. 1). One important characteristic of many tuning curves is the existence of a

(local) maximum, i.e. there is a specific stimulus value for which the neuron maximises

its spiking frequency (cf. Zemel et al., 1998, p. 405). This specific value is denoted as

the preferred stimulus of the corresponding neuron.

The brain makes use of this property in certain situations, for example, to orientate

itself in space: The discovery of so-called place cells happened in 1971 by O’Keefe and

Dostrovsky during an experiment in which the authors measured spiking activity for a

neuron population in a rat’s brain while the rodent moved through a cage (cf. O’Keefe

and Dostrovsky, 1971). The main result is that for each location within the cage,

another neuron maximised its frequency. The discovery of these place cells suggests that

neurons can be organised in such a way that their tuning curves fully cover the whole

range of possibilities for a stimulus so that the true state of the world can be inferred.

Noteworthy is also the “considerable spatial overlap between the fields” (Pouget et al.,

2000, p. 125) when tuning curves are organised to cover a range of possible values. This

finding is essential for understanding how the brain operates efficiently in the presence

of noise: Since neuronal noise can support or suppress stimuli-related action potentials
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(cf. Faisal et al., 2008, p. 294), one neuron may respond stronger to a certain location

within the maze than the neuron whose preferred value is actually fixed to this location.

Put simply, noise can cause the wrong neuron to respond stronger than the correct

neuron. This effect is diminished when the whole population is considered, as each

neuron represents an uncertain voter (for the true stimulus value). The overlapping of

tuning curves ensures that multiple neurons near the true stimulus respond stronger

than the remaining ones on average. In this light, it makes sense not to select that

particular neuron with a maximum response (whose preferred stimulus may be far from

the true stimulus), but to locate the true stimulus within this local group, where many

neurons respond strongly, and then use the local maximum instead of the global one.

This line of argument is consistent with the acknowledged opinion that population codes

indeed serve to overcome issues related to noise:

“One key property of the population coding strategy is that it is robust

[...] because the information is encoded across many cells. [...] Population

codes turn out to have [...] computationally desirable properties, such as

mechanisms for NOISE [sic!] removal [...].” (Pouget et al., 2000, p. 125)

Of course, the given example is only about spatial orientation so that generalising to

other brain tasks seems difficult. However, population coding has additionally been

revealed for a plethora of other brain tasks:

“For instance, in primary visual cortex (V1) and area V4 of the macaque,

population codes exist for orientation, color, and spatial frequency. In the

hippocampus in rats, a population code exists for the animal’s body location.

A population code for spatial location in a visual scene or of the body of the

organism is also called a topographic map. The cercal system of the cricket

has a population code for wind direction. The secondary somatosensory

area (S2) in the macaque has population codes for surface roughness, speed,

and force. The postsubiculum in rat contains a population code for head

direction. Primary motor cortex (M1) in macaque uses populations coding

for direction of reach. Even abstract concepts such as number appear to be

encoded by population codes in the prefrontal cortex.” (Ma and Pouget,

2009, p. 751)

In the light of this evidence, it is justified to believe Pouget who declares that “all neural

circuits share similar features and, in neocortex, the detailed circuitry is remarkably
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well preserved across areas. It is therefore quite possible that these circuits share

common computational principles” (Pouget et al., 2013, p. 1177). In addition, it

could be demonstrated that probabilistic population codes greatly simplify a very

important task of cognitive systems, namely cue integration which is clearly described

by Trommershauser as follows:

“When an organism estimates a property of the environment so as to

make a decision [...], there are typically multiple sources of information

(signals or ‘cues’) that are useful. Information may [...] derive from multiple

senses such as visual and haptic information about object size, or visual and

auditory cues about the location of a sound. In most cases, the organism

can make more accurate estimates of environmental properties or more

beneficial decisions by integrating these multiple sources of information.”

(Trommershauser et al., 2011, p. 5)

From a theoretical Bayesian perspective, cue integration is the process of merging several

probability densities for the same stimulus into a single density. Such processing is

inevitable under the assumption that the brain works by agency. As stated above, each

agent (i.e. neuron population) can only focus on a limited amount of parameters. In

order to get a holistic estimation about a stimulus it seems fruitful to combine the

different agents’ sources of information.

For instance, having two independent agents A1 and A2 representing the location

probabilities of a sound source (e.g. a car crash) based on distinct sensation (e.g. auditory

and visual), these pieces of information can be combined with Bayes’ rule P (s|A1, A2) ∝
P (A1|s)P (A2|s)P (s). Given the assumption of a flat prior P (s) (inexperienced observer)

and normality of both likelihoods P (Ai|s) with i = 1, 2, Pouget shows that the combined

posterior is yet a Gaussian with sufficient statistics
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(cf. Ma et al., 2006, p. 1433). The assumption of normality is justified by the fact

that “neuronal variability is due to the combined effect of a large number of stochastic

processes” (Ma and Pouget, 2009, p. 750) and indeed, the above considerations can

be verified in a variety of real life experiments (cf. Jacobs, 1999; Knill and Saunders,

2003; Hillis et al., 2004; van Beers et al., 1999; Ernst and Banks, 2002; Battaglia et al.,

2003; Alais and Burr, 2004). The interesting point is that the involvement of the
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above considerations describes Bayes-optimality throughout sensory perception. This

means that the combination of both cues is weighted according to the certainty or

reliability of each agents’ information. This cue-weighting means that an observer

naturally accounts strongest for the most reliable information. Evidence that mammals

behave Bayes-optimal contributes in favour of the Bayesian brain hypothesis and it

implies that agents are capable of encoding entire probability distributions which must

inevitably be preserved during the cognition process. From this follows that “these

distributions are collapsed onto estimates only when decisions are needed” (Ma et al.,

2006, pp. 1436–1437). This conclusion has also been drawn in the first half of this thesis.

The true process of such Bayesian-optimal cue integration is still unknown (cf. Ma et al.,

2006, p. 1432). However, Pouget was able to demonstrate that the PPC model is not

only able to encode such densities but that it also simplifies cue integration:

“Specifically, this [Poission-like] variability has a unique property: it

allows neurons to represent probability distributions in a format that reduces

optimal Bayesian inference to simple linear combinations of neural activities.”

(Ma et al., 2006, p. 1432)

The mathematical evidence can be found in Ma et al. (2006); Pouget et al. (2013); Beck

et al. (2007) and relies on the assumption that the noise distribution is part of the

exponential family. Surprisingly, this is exactly what has been found within the nervous

system, i.e. the noise indeed follows a Poisson distribution (cf. Moreno-Bote, 2014).

Besides this theoretical evidence for PPC involvement, there are also experimental

hints to be found: The application of PPC in cue integration has been positively

evaluated for robots in artificial environments facing an auditory-visual integration task

(cf. Bauer et al., 2015). Moreover, the linear merging of particular neurons within two

populations “is consistent with the responses of neurons in areas such as [the] lateral

intraparietal cortex” (Pouget et al., 2013, p. 1173). The involvement of PPC in cue

integration might be fruitful for user feedback as well. So it may be possible that a

single feedback is formed by evaluating different sub-aspects (e.g. ergonomics, visual

appearance, usefulness, price-performance ratio, etc.) which are then aggregated. The

PPC model provides useful approaches for this aggregation within a Bayesian framework

and under consideration of real biological operating principles.
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At this point, the facts and the success of the PPC model should be recollected

along with an explicit elucidation for its appropriateness when considering uncertain

user feedback. The above literature research revealed that many authors assume a

connection between neuronal noise and decision-making in an uncertain world. Just

as many authors assume that neuronal noise is also responsible for a trial-to-trial

variability of behaviour which is exactly what has been observed for user feedback. This

is particularly interesting, because there is some doubt about the idea that human

uncertainty arises from a different history, i.e. a changing context. At the beginning of

this thesis, the alternative hypothesis was presented that this phenomenon could rather

originate from a complicated cognitive process. Now the first evidence has been found

that this idea is shared by other authors and that a plausible origin of this uncertainty

has been identified as noise in the nervous system. In particular, there is indeed a neural

basis for modelling behaviour as a probability density and it is assumed that the brain

does the very same; i.e. that it works specifically with such densities (Bayesian brain

hypothesis). This is demonstrated by various cue integration experiments, all of which

provide evidence that the entire density must be fully available for the cognitive process.

The theory about a single user rating being only a draw from an underlying feedback

distribution was also substantiated by neuroscience since Pouget proposed “that these

distributions are collapsed onto estimates only when decisions are needed” (Ma et al.,

2006, pp. 1436–1437). So, the considerations from the Bayesian brain hypothesis are

in total concordance to those made in the first half of this dissertation, i.e. human

uncertainty is likely to have a biological origin and feedback estimates are likely to be

drawn from internal distributions.

However, many research projects in the field of the Bayesian brain hypothesis deal

with the integration of two densities, the storage and update of prior densities, the

reinterpretation of neuroimaging data, and so forth (cf. Doya et al., 2007). At their

very essence, all of these research directions are not concerned with the development

of probability densities and how they can be used to explicitly obtain single estimates,

for instance, a 3-star rating. In this network of contributions on the Bayesian brain

hypothesis, only one single theory has been found during the literature study that deals

with the emergence and representation of densities along with collapsing densities onto

estimates when needed. This is the model of probabilistic population codes (PPC).

This model is consistent with the presumed brain agency and, in the light of explicit

measurements of neuronal noise, it simplifies agency communication in such a way that
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it can be performed by neurons in the cortex. The applicability of such encoding has so

far been positively evaluated for

• motor commands and neural prosthetics (cf. Chapin, 2004),

• tactile perception of crickets (cf. Dayan and Abbott, 2001, pp. 12–14),

• auditory perception (cf. Knill and Pouget, 2004),

• visual recognition of orientation, colour, direction of motion, and depth

(cf. Pouget et al., 2000, p. 125).

It must be emphasised how remarkably the biological measurements and theoretical

derivations fit together with the phenomenon of human uncertainty when the PPC

model is applied. Moreover and even more important, the PPC model provides a

mathematical framework to describe how such densities arise on the basis of noisy

neuronal responses. Such a mathematical description and computability is important

for developing novel computer systems for prediction. One potential disadvantage of

this model is that it was mainly evaluated in sensory perception and motor control so

far. Other authors always assumed an involvement in higher cognition as well and quite

recently, evidence has been found for PPC models to explain memory effects:

“Errors in short-term memory increase with the quantity of information

stored [...]. An alternative perspective attributes recall errors to noise

in tuned populations of neurons [...]. I show that errors associated with

decreasing signal strength in probabilistically spiking neurons reproduce

the pattern of failures in human recall under increasing memory load. In

particular, deviations from the normal distribution that are characteristic

of working memory errors [...] are shown to arise as a natural consequence

of decoding populations of tuned neurons. Observers possess fine control

over memory representations and prioritize accurate storage of behaviorally

relevant information [...]. I show that changing the input drive to neurons

encoding a prioritized stimulus biases population activity in a manner that

reproduces this empirical tradeoff in memory precision. In a task in which

predictive cues indicate stimuli [...], human observers use the cues in an

[Bayes-]optimal manner to maximize performance, within the constraints

imposed by neural noise.” (Bays, 2014, p. 3632)
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Evidence for the area of decision-making is still pending. However, considering the previ-

ous evidence in favour of this model, there is sufficient substantiation that probabilistic

population codes are nevertheless a good choice. Therefore, all further investigations

in this chapter assume that the PPC approach can be used for modelling unreliable

decision-making. Heuristically, why would the evolution of the human brain give birth

to two distinct principles of operation (i.e. one for sensory perception and another

for cognition) when there is one single principle to explain them all. A supposedly

bigger point of criticism is the choice of stimulus when this model is transferred to

decision-making. In sensory perception, the stimulus is clearly defined and neuronal

representations of such states of the world can be measured explicitly. For example,

it is possible to measure the neuronal representation of space and location in place

cells. Considering decision-making, however, it is hardly possible to identify a neuronal

representation of something as abstract as a star-rating. In this regard, a brief reminder

has to be given that the stimulus is not a physical object of the real world but just a

hidden variable, i.e. a metaphor for starting the modelled (artificial) cognitive process.

The fact that this hidden variable (i.e. the cause of neuron activation) can be detected

during sensory perception does not necessarily mean that there is no hidden variable

that triggers a cognitive process in unmeasurable situations. The existence of such a

cause of neuronal activation is based on the fact that people are obviously able to make

decisions and to provide user feedback – and the related cognition process has to be

started somehow. The only lack of clarity is whether the user feedback options s are

directly represented or whether there is a transformation τ so that a representation of

τ(s) takes place. For the initial research in forthcoming sections, τ ≡ idR will be used.

It has now been clarified that this model addresses the popular assumption of

behavioural variability being caused by neuronal noise. It has been pointed out that this

model has been positively evaluated in many areas of cognition. It was also emphasised

that this model provides the necessary mathematical description for implementation in

predictive systems. What has not yet been clarified is what such an implementation could

look like and how it could be evaluated. Since the population responses solely depend on

how tuning curves cover the range of possible stimuli values, it seems obvious to explicitly

parametrise those tuning curves and to specify the covering approach (e.g. equidistant,

adaptive, etc.). For this, Pouget gave initial hints in various publications (cf. Pouget

et al., 2000; Ma and Pouget, 2009; Doya et al., 2007). In this way, several parameter

vectors can be obtained, each characterising a population’s basic configuration. These
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vectors naturally span a feature space and each user feedback can then be represented

in the form of a neuronal feature vector. This may enable user clustering based on the

neuronal disposition of individual users along with many other possible applications in

predictive data mining. The evaluation of such a model can be based, for example, on

the quality with which it reconstructs the densities measured in the RETRAIN study

without violating biologically realistic limits.

6.3 Probabilistic Population Codes

In this section, the modelling of probabilistic population codes is introduced according

to Ma et al. (2006). However, minor changes are applied to fill missing model details

and to extend this model to the scenario of user feedback. Furthermore, evidence is

discussed to make this model more plausible concerning its appropriateness for human

decision-making (higher cognition). But first of all, it is important to understand how

the human brain processes information and where uncertainty arises during the cognitive

process. These mechanisms are then translated into an adequate user model.

The Single Neuron Model

The response of a single neuron to a stimulus is limited to the transmission of electric

impulses (spiking) and since each neuron has only got two states of activation, i.e. spiking

or not, theories of neural coding assume that information is encoded by the spiking

frequency (rate) (cf. Doya et al., 2007, p. 53). The functional relationship between such

responses r of a neuron and the attributes s ∈ S ⊂ R of a stimulus is given by the

so-called tuning curve r = f(s) (cf. Dayan and Abbott, 2001, pp. 12–15 of Ch. 1).

A fundamental experiment to reveal this functional relationship was conducted by

Hubel and Wiesel (1968). They measured the spiking rate of a single neuron from a

monkey’s visual cortex V1 whilst presenting a rotating black bar. The experimental

setting and the data obtained are visualised in a simplified form in Fig. 6.1 following

the description by Doya (cf. Doya et al., 2007, pp. 73–74) and Dayan (cf. Dayan and

Abbott, 2001, p. 13 of Ch. 1). The boxplots represent the repeated measurement of

spiking rates for always the same rotation angle. Two results can be observed: The first

result is that there is indeed a functional relationship between the rotation angle of the

black bar and the measured spiking rate of a particular neuron. The second result is the
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Figure 6.1: Experimental measuring of a tuning curve according to Hubel and Wiesel (1968);
Dayan and Abbott (2001); Doya et al. (2007)

unreliability of spiking, i.e. the same stimulus does not necessarily result in the same

spiking rate when the measurement is repeated. Even from this single experiment, it

can already be concluded that the internal representation of the outer world is not fully

reliable and repeated decisions based on these representations might change slightly.

This basic idea will indeed constitute the source of human uncertainty according to the

model of probabilistic population codes.

To this day, further experiments revealed that each neuron holds an entire set of

possible tuning curves for different stimuli and their respective characteristics (cf. Mallot,

2013, p. 113). Besides irregular shapes, tuning curves have frequently been measured to

be bell-shaped or sigmoid-shaped, respectively (cf. Dayan and Abbott, 2001, pp. 12–15

of Ch. 1). Moreover, each tuning curve maximises for a particular value p := argmax f

which is denoted as the preferred stimulus. The approach in this thesis follows Doya et al.

(2007); Pouget et al. (2000); Ma and Pouget (2009) and confines to bell-shaped tuning

curves. Unfortunately, the relevant literature is missing an explicit parametrisation of

these curves so that an independent parameter model has to be defined according to

the descriptions in Pouget et al. (2000). For p ∈ R and w, g, o ∈ R
>0, a bell-shaped

tuning curve with preferred value p can be defined as

fp :

⎧⎨⎩S → R

s �→ g · h(p, w)(s) + o
(6.2)

where the shape emerges from the Gaussian density function h(p, w) with sufficient

statistics p and w. The parameter w will henceforth be referred to as the tuning curve

width. The remaining parameters can be explained heuristically: The tuning curve

width naturally induces the maximum spiking rate max fp due to the normalisation of
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Figure 6.2: Parametrisation of a bell-shaped tuning curve

probability densities. To provide more flexibility, i.e. modelling higher or lower spiking

rates for a given width, the Gaussian has to be multiplied with an additional stretching

factor g which will be denoted as the frequency gain. The measurement results depicted

in Fig. 6.1 suggest yet another component that adds to the frequency, i.e. a spiking

offset. This offset becomes obvious when considering fp at the limits of its domain S

(stimulus space). This assumption is consistent with the setting of Pouget (cf. Pouget

et al., 2000, p. 126) and Doya (cf. Doya et al., 2007, p. 116). For this reason, a positive

constant o is added which will be called the spiking offset. All these parameters and

their correspondence to forming the curve of fp is depicted in Fig. 6.2.

So far, this model has been based upon static and reliable neuronal responses. This

is by no means the case when measuring tuning curves in reality because of the perpetual

interference with so-called neuronal noise (cf. Faisal et al., 2008). As the results from

Fig. 6.1 demonstrate, one will find that spiking rates associated with a specific stimulus

form a distribution of possible responses. These must hence be seen as random variables

R and it has indeed been found that R∼Poi(λ) follows a Poisson-like distribution (cf.

Moreno-Bote, 2014). Accordingly, a given stimulus value s will produce spiking rates

r ∈ N each with a different probability determined by

Pλ(R = r) =
λr

r!
exp(−λ) (6.3)
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with parameter λ ∈ R
>0 which represents the expectation and variance of the random

variable R. Practically, tuning curves are measured by multiple repetitions carried

out for each value s of a stimulus followed by averaging fp(s) = E(R) (cf. Dayan and

Abbott, 2001, pp. 12–13 of Ch. 1). The Poisson parameter can hence be set to λ = fp(s)

and it follows that

P (R = r) =
fp(s)

r

r!
exp(−fp(s)) for r ∈ N. (6.4)

Given a measured spiking rate r of a single neuron with well-known tuning curve f ,

the task is now to guess the stimulus value s that had triggered this response. This

problem is easily solved in the absence of neuronal noise just by computing the fibre

{s} = f−1(r) over r. Please note that the inverse image of f is not necessarily unique

since f is not injective for bell-shaped tuning curves. In reality, i.e. when including noise,

this recent approach is hardly appropriate. Each s could have triggered this response

with a certain probability P (s|r). Thus, the stimulus cannot be precisely determined

but it can be inferred, e.g. by opting for a stimulus that maximises this probability, i.e.

s = argmaxs∈S P (s|r). This argumentation mathematically exemplifies the essence of

the Bayesian brain hypothesis as it has already been introduced in Sec. 6.2 through

a detailed comparison of literature. If noise is involved, it is no longer possible to

draw reliable conclusions about the cause of a neuronal response. The only way to

gain clarity about the cause is to consider all the probabilities of possible causes and

assume the most probable of them. For this purpose, the brain would necessarily need

to incorporate representations of probability distributions. This makes the human brain

indeed a Bayesian inference machine. As described in Sec. 6.2, this Bayesian inference

becomes more stable when multiple neurons are utilised as each of them contributes

additional information. It is thus reasonable to consider whole populations of neurons.

Probabilistic Population Codes

Up to this point, the phenomenon of neuronal noise has been considered together with

its possible role in encoding sensory perception and higher cognition for single neurons.

This approach is feasible to get a first understanding of the Bayesian brain hypothesis

along with its potentials for modelling unreliable user feedback. However, cognitive tasks

are executed by a vast number of interacting neurons rather than by lone individuals

(cf. Dayan and Abbott, 2001, p. 6 of Ch. 1).
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Figure 6.3: Simplified illustration of the discovery of place cells. For each position in space,
another neuron maximises its spiking frequency (illustrated by the red dots).

One important finding related to neuron populations – at least for this dissertation –

is the discovery of place cells. These have already been outlined in Sec. 6.2) and must

be described in more detail at this point. In 1971, O’Keefe and Dostrovsky conducted

an experiment in which they measured spiking activity for a population of neurons of a

rat’s brain (cf. O’Keefe and Dostrovsky, 1971). The rat was brought into a cage where

its video recorded trajectory was aggregated with its population spiking behaviour.

This experiment is depicted in a simplified form in Fig. 6.3. The main result is that

for each location within the cage, another neuron of this population maximised its

frequency. This means that all neurons within this population were encoding the entire

two-dimensional space. The spiking rate of each neuron encoded a range of possible

spatial coordinates for estimating the rat’s current location. This principle holds a huge

advantage: By representing the entire space with a multitude of neurons, the brain

yields much more probabilities P (s|rj) (j = 1, . . . , n) about possible locations which

can be integrated for a more precise spatial orientation. Transferring this finding to

the mechanism of decision-making means that there is a universal set S of all possible

decision outcomes for a particular situation and that each neuron within an assigned

population is maximising its spiking frequency for another decision so that the entire

population is able to cover the whole range of S. Mathematically this is achieved by

spreading the preferred values of the neuron’s tuning curves equidistantly along S.

To this end, let S ⊂ R be a proper subset representing the universal set of all

decision outcomes. Let n ∈ N be the number of assigned tuning curves with respect to
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Eq. 6.2, all having the same parameters w, g, o ∈ R
>0. Let the sequence

(pj)j=1,...,n := inf(S) + j · sup(S)− inf(S)

n
(6.5)

be an equidistant partition of S. Note that S does not necessarily need to be a closed set

and hence the supremum and infimum are required to determine its boundaries because

a minimum and a maximum does not exist in this case. To provide simplicity to this

model, all parameters determining the population size, the shape of all tuning curves,

as well as the assumed stimulus (i.e. the unknown decision in the form of a hidden

variable) s ∈ S are summarised in a vector ξ = (n, g, w, o, s) which will be referred to as

the cognition vector. Such a cognition vector ξ hence becomes the representation of a

whole population together with its cause of activation. Given a fixed ξ, each neuron will

respond according to its specific tuning curve and distortion due to neuronal noise, i.e.

fj(s) := fpj (s) = g · h(pj , w)(s) + o (6.6)

Rj ∼ Poi(fj(s)). (6.7)

The realisation rj of the random variable Rj is denoted as the response of the j-th

neuron. To keep in mind that these responses are always dependent on the parameters of

the cognition vector, the notation rj(ξ) will be used henceforth to indicate a realisation

of Rj(ξ). The response of the entire population is formed by the response of each neuron

and so the n-dimensional random variable

R(ξ) := (R1(ξ) , . . . , Rn(ξ)) (6.8)

is denoted as the population response for ξ with realisation �(ξ) = (r1(ξ) , . . . , rn(ξ)).

This theory of the origin of noisy population responses is illustrated in Fig. 6.4.

In this example, ξ = (11, 10, 0.5, 5, 3) is used as the cognition vector, i.e. there are

n = 11 neurons that respond to the assumed stimulus (i.e. the cognition result) of

s = 3 stars where each tuning curve has the offset o = 5Hz, the width w = 1Hz, and

the gain g = 7. In the left-hand subfigure, one can see the tuning curves which are

distributed equidistantly over the possible range of a rating scale S with five stars. For

s = 3 stars, the responses of each neuron can be fetched from its tuning curve. For a

better representation of the population response, it has become a standard to plot the

individual responses against the corresponding preferred values (cf. Pouget et al., 2000,

p. 126) which can be seen in the middle subfigure. These are the theoretical (static)
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Figure 6.4: Genesis of noisy population responses demonstrating the alteration for each
cognition trial (red and blue)

responses without any consideration of neuronal noise. To add this neuronal noise, each

static response rstatic
j (ξ) is replaced by the draw of a random number from the Poisson

distribution with parameter λ = rstatic
j (ξ). This can be seen in the right-hand subfigure.

In addition, the very same sampling has been repeated one more time, i.e. the blue and

the red dots in each case represent a noisy population response and it is obvious that

these differ not only from the theoretical reference but also from each other. Again,

it can be seen that the repetition of the same cognition leads to different neuronal

activities, even when numerous neurons are involved. Whilst being computationally

easy to infer the most likely cause of activation for a single neuron, this task is far more

complicated for an entire population since there are many probability densities to be

evaluated simultaneously. This provokes the discussion of multiple alternative strategies

of decoding population activities as they are introduced in Ma and Pouget (2009).

Decoder Functions

The main question that arises when observing activities of numerous neurons is: How

does the human brain translate this population activity into estimates for a state of the

world or a cognition, respectively. Theories assume the utilisation of so-called decoder

functions (cf. Ma and Pouget, 2009, pp. 752–754). Mathematically, a decoder function

is a mapping

ϕ : Rn → S (6.9)
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from population activity onto the estimation scale S representing a stimulus or cognition.

Several of these decoders are introduced in Ma and Pouget (2009). Based on this

publication, a brief overview of the most frequently discussed decoder functions shall be

given at this point.

Mode Value Decoder (MVD): Based on the construction of tuning curves, the

MVD assumes that it is exactly that neuron with maximum spiking frequency that

is most likely to be addressed by a given stimulus or state of the world. The decoder

function is thus given as

ϕmvd : �(ξ) �→ argmax
pj∈S

{r1(ξ), . . . , rn(ξ)}. (6.10)

Figure 6.5 depicts a population response for a stimulus of 3 stars (red line) together with

possible estimates (green lines) for this decision. This decoder is very prone to neuronal

noise and its estimates are subject to a great ambiguity which, however, diminishes for

higher frequencies in neuronal responses.

Weighted Average Decoder (WAD): The WAD accounts for all responses by

setting the specific frequency as a weight to the corresponding preferred value and

considers its contribution to the total response. Mathematically, the WAD is given by

ϕwad : �(ξ) �→
∑n

j=1 rj(ξ) · pj∑n
j=1 rj(ξ)

. (6.11)

As to see in Fig. 6.5, this decoder function does not produce ambiguous estimates and

is very stable against neuronal noise.

Maximum Likelihood Decoder (MLD): For a given population response, the

MLD chooses the estimate ŝ with a view to maximise the likelihood function:

ϕmld : �(ξ) �→ argmax
s∈S

P (�(ξ)|s), (6.12)

where the likelihood itself is given by the i.i.d. assumption together with the Poisson

probability mass function

P (�(ξ)|s) = P (r1(ξ), . . . , rn(ξ)|s) =
n∏

j=1

fpj (s)
rj(ξ)

rj(ξ)!
exp
(−fpj (s)

)
. (6.13)
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Figure 6.5: Visualisation of decoder functions for a population response constructed with
ξ = (100, 1, 1, 5, 3). The red and green lines show the true and the decoded stimulus.

Figure 6.5 depicts the likelihood function (green curve) for the population response

together with the MLE estimates (green line). It can be seen that the estimate coincides

with the boundaries of S which often occurs for lower frequencies. The MLD is the first

decoder that explicitly accounts for neuronal noise through the Poisson probability.

Maximum A Posteriori Decoder (MAD): The likelihood can be transformed

into a posterior probability over the stimulus via Bayes’ theorem, i.e. P (s|�(ξ)) ∝
P (�(ξ)|s) · P (s) where P (s) denotes the prior belief about the stimulus or the state

of the world that has been learned through former experiences. The estimate is then

chosen to maximise the posterior, i.e.

ϕmad : �(ξ) �→ argmax
s∈S

P (s|�(ξ)) (6.14)

The MAD is much like the MLD but with less variability since the prior works as a

stabiliser. For the example depicted in Fig. 6.5, a Gaussian with μ = 3 and σ2 = 0.75

has arbitrarily been chosen as prior belief. The Bayesian brain hypothesis assumes a
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prominent role of this decoder function since each population would then naturally repre-

sent a probability density over a stimulus or state of the world which integrates memory

and which can easily be aggregated with other populations’ densities by mere addition

(cf. Beck et al., 2007). As discussed above, this was found to be a plausible description

of the brain’s operating principles for multiple sensory inputs (cf. Knill and Pouget, 2004).

All decoder functions represent plausible strategies for the translation of neuronal

activities into real-world estimates. Unfortunately, “the manner in which probability

distributions are [represented] in the brain remains unclear, and thus the neural code

of uncertainty is unknown” (cf. Walker et al., 2020, p. 122). Because it is still unclear

which code is indeed applied, all four decoders will be considered for the upcoming

analyses and the most appropriate strategy concerning unreliable user feedback will be

determined afterwards.

6.4 Neuroscientific User Model

So far, the basic model has been introduced that allows different population activities to

encode one and the same stimulus. For sensory perception, this model can be seen as a

noisy translation from outside reality into inside representation. For cognition, however,

this model provides a possible translation from a cognitive black box into unreliable

but yet measurable representations of decisions and thinking patterns. It is important

to understand that this model should not be understood as a subsequent stage of

transformation that distorts a reliable cognition (e.g. s = 3 stars) with noise. It is rather

the case that the cognition itself is given as a noisy neuronal activity through population

responses. In this sense, the input of a constant stimulus s is just a mathematical

necessity to initiate the artificial coding process and to apply some kind of calibration

which allows the resulting estimates to build a distribution around s. Therefore, this

cognition model is not supposed to explain the process of choice preference itself but to

solely explain the genesis of human uncertainty that comes along with it.

The good fit of this model to the phenomenon of human uncertainty has often been

suggested. In particular, when repeating decision-making for a specific feedback task,

neuronal noise will lead to different population responses which then lead to different

estimates. These model-based estimate distributions can be seen as an equivalence to

those feedback distributions measured during the RETRAIN study. This means that for
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Figure 6.6: Model-based feedback distributions obtained from repeated computation of
neuronal activities for ξ = (100, 1, 1, 5, 3) and subsequent decoding

a particular user-item pair ν = (u, i), an artificial estimation f̂ of a single feedback choice

can be obtained directly from the realisation of a population response, i.e. f̂ = ϕ(�(ξ)).

Hence, noisy user feedback Fν can be represented as a random variable given as

Fν = (ϕ ◦ R)(ξ). (6.15)

This is exemplified in Fig. 6.6. For these illustrations, 1000 estimates were generated

with each decoder function based on the fixed cognition vector ξ = (100, 1, 1, 5, 3). For

the MVD, the vulnerability for neuronal noise is clearly visible since the corresponding

feedback distribution exhibits the largest spread. Even at the boundaries of 1 and 5

stars, there is a high probability of occurrence for estimates generated by this decoder

function. The resulting distribution seems only slightly more informative than a uniform

distribution. Using the Bayesian definition of probability (which is a measure for

one’s personal confidence), such user feedback would have been provided by users who

are not sure about which rating seems appropriate. For the WAD, its robustness to

neuronal noise and the quality of estimation can be noticed. A user who utilises this
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decoder function would surely give constant ratings. Conversely, users with larger

uncertainties can probably not be modelled with this decoder. The MLD reveals a

remarkable property: Due to the small size of the rating scale S = [1, 5], the likelihood’s

maximum frequently coincides with the scale’s boundaries. Therefore, this theoretical

set-up might explain users who often only choose between these boundary ratings.

At first glance, the MAD provides the most plausible feedback distributions when

compared to those measured in the RETRAIN experiment. This seems to strengthen

the Bayesian brain hypothesis.

The challenge of this neuroscientific user model is to find a specific cognition vector

ξν for each user-item pair ν = (u, i) along with a decoder function ϕ, so that the model-

based feedback F̂ν minimises the difference to the real user feedback Fν in terms of an

arbitrary similarity metric d. Mathematically, this user model is given by Fν ≡ (ξν , ϕ)

together with the specification

(ξν , ϕ) := argmin
(ξ,ϕ)

d
(
Fν , F̂ν

)
= argmin

(ξ,ϕ)
d
(
Fν , (ϕ ◦ R)(ξν)

)
. (6.16)

The advantage of this model is that there is a cognition vector from a five-dimensional

vector space associated with each user-item pair. This vector space therefore contains

five times more information than the standard case (one variable per user-item pair, i.e.

the rating itself) or respectively, 2.5 times more information than a statistical user model

(two variables per user-item pair, i.e. mean and variance). At this point, it is reasonable

to ask why it is advantageous and expedient to expand the distribution’s properties for

each user-item pair, that is the mean and variance (i.e. a two-parameter model) into a

model with five parameters. In other words, where does the additional information come

from? Well, this information comes from the internal processes as they are proposed

in neuroscience research. One source of additional information is, for example, the

number and shape of tuning curves as well as the Poisson-like neuronal noise which

is dependent on a particular response frequency rate. Furthermore, the subsequent

data aggregation done by the decoder functions also influences the shape of feedback

distributions and thus contributes to a possible information gain. In short: All these

components provide enough information to support the extension of a two-dimensional

space into five dimensions by incorporating the latest neuroscientific insights into the

human brain.

130



6.4. NEUROSCIENTIFIC USER MODEL

user model feedback representation dimensionality

standard Fν ≡ fν 1

repetition Fν ≡ (f1ν , . . . , f
5
ν) 5

statistical Fν ≡ (μν , σν) 2

neuroscientific Fν ≡ (nν , gν , wν , oν , sν) 5

Table 6.1: User models for (uncertain) feedback representation

Application

To apply this user model as it is given by Eq. 6.15 and Eq. 6.16, one needs to transform

each measured feedback distributions into a particular cognition vector. To be more

precise, one needs to associate a unique cognition vector ξν to each user-item pair

ν = (u, i) in such a way that this vector produces a model-based feedback distribution

F̂ν which comes as close as possible to the real distribution Fν with respect to a particular

decoder function ϕ. This cognition vector is henceforth the representation of a user’s

opinion about an item. An overview of all conceivable user models and their respective

feedback representation as well as the feature space dimensionality is given in Tab. 6.1.

The best way to determine a cognition vector would certainly be a closed mathe-

matical formalism in terms of a certain transformation τ : Fν �→ ξν or, alternatively, an

efficient approximation. However, Ma and Pouget claim that a purely mathematical

approach is not possible for probabilistic population codes (cf. Ma and Pouget, 2009,

p. 751). This statement seems reasonable for the following reasons: First of all, the

response of each neuron is given as an individual random variable. Thus, convolutions

must be calculated for often more than 200 independent and non-identical variables

(i.e. neurons), which can hardly be described in a closed form. Then again, most

decoder functions are designed to work only with realisations of random variables.

When focusing on the random variable rather than on its realisations, the likelihood

(needed for the MLD and MAD) would simply become the multi-dimensional joint

density P (R(ξ)|s) = P (R1(ξ), . . . , Rn(ξ)|s) whose maximum may be ambiguous modulo

marginal distributions. Moreover, the joint density of 200 variables can impossibly be

captured in a closed formalism as well. Another approach might be to approximate the

feedback distributions by Gaussians and find functional dependencies for their sufficient

statistics, that is μ = μ(n, g, w, o, s) and σ = σ(n, g, w, o, s), respectively. This solution
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is mainly undermined by model complexity and altering functional dependencies to the

neuronal parameters whenever one single parameter is (only slightly) changed.

In the absence of a closed mathematical formalism, one has to rely on large-scale

simulations. A simple way is to translate a predefined family of cognition vectors into

model-based feedback distributions and compare these to the original user feedback in

a brute force manner. This procedure requires the following steps of pre-operation:

• Determining reasonable boundaries for each neuronal variable in the PPC model

and generate a finite set of corresponding cognition vectors.

• Choosing the right combination of similarity distance and decoder function that

will produce the best fit.

These tasks will be done in the following sections. After “learning” the correct model

properties in this preliminary work, they will be applied on the full RETRAIN data record

to find the best fitting cognition vectors. To maintain the neuroscientific foundation of

this model, it will be examined whether its implications are consistent with the latest

biological or medical findings published in the scientific literature.

6.5 Parameter Boundaries

Unfortunately, there was no quantitative information on the parameter boundaries in any

published paper about probabilistic population codes. From Pouget et al. (2000); Doya

et al. (2007); Ma and Pouget (2009), however, some parameters can be reconstructed

from corresponding graphics. In this regard, initial parameter settings are

n = 10 ; g = 1 ; w = 1 ; o = 5. (6.17)

Starting from this basis, attempts were made to reproduce randomly selected feedback

distributions on a single machine with different decoder functions. In doing so, reasonable

parameter boundaries have been found that would work optimally with all decoders.

These empirically determined parameter ranges are:

10 ≤ n ≤ 250 ; 1 ≤ g ≤ 100 (6.18)

0.1 ≤ w ≤ 2.0 ; 0 ≤ o ≤ 15 (6.19)
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For the further analyses, especially for the upcoming user classification task, individual

sets N, G, W, O of 100 equidistantly distributed values will be computed for each

parameter range determined above. A single cognition vector can hence be regarded as

an element ξ ∈ N ×G×W ×O × {s} where the stimulus s := E(Fν) is passed to the

model as the expectation of the corresponding feedback distribution.

6.6 Similarity Metrics

The comparison of distributions through statistical testing is out of question for it only

supports dichotomous decisions. Rather, a quantitative measure is needed to indicate

the degree of similarity. In the field of machine learning, the Jensen-Shannon-Divergence

(based on the Kullback-Leibler-Divergence) is often used for this purpose. This distance

is formulated for discrete probability distributions as well as for continuous densities.

This reflects the present modelling since it relies on discrete data (and hence needs

appropriate analysis), but it also assumes the existence of an underlying continuous

density (whose analysis requires different methods). Both formalisms can be covered

with this distance. In addition, metrics from the field of psychometry will also be

examined. Standard measures for similarity are, for example, Cohen’s Kappa (typically

used to determine inter-rater reliability) (cf. Döring and Bortz, 2016, pp. 567–568) and

Cohen’s D (often denoted as effect size) (cf. Döring and Bortz, 2016, pp. 816–819).

Jensen-Shannon-Divergence: A definition of the Jensen-Shannon-Divergence has

already been given by Eq. 4.25, but shall now be repeated to improve comprehensibility:

Let X be a probability space and let P,Q be discrete probability mass functions on X.

The Kullback-Leibler-Divergence is then defined as

KL(P,Q) :=
∑
x∈X

P (x) · log
(
P (x)

Q(x)

)
(6.20)

(cf. Lee, 2000, Ch. 2). The Kullback-Leibler-Divergence has some major disadvantages:

By definition, it is not symmetric and has no upper bound. These issues are corrected

by the Jensen-Shannon-Divergence (JSD) which is defined via

JSD(P,Q) :=
1

2
KL(P,M) +

1

2
KL(Q,M) (6.21)
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where M = 1
2(P +Q) (cf. Lee, 2000, Ch. 2). For the continuous case, the JSD is defined

analogously. When using the binary logarithm for the Kullback-Leibler-Divergence, the

JSD can be shown to be bound by 0 ≤ JSD ≤ 1 (cf. Lin, 1991, pp. 147–148) which is

advantageous when evaluating the overall quality of model-based feedback distributions.

In this thesis, the JSD is implemented in three different ways:

The pureJSD has no additional assumptions about the RETRAIN data. This means

that the probability mass function of the real data is given as the relative histogram

of user ratings. To maintain similar discretisation (i.e. the same bins) the model-

based feedback has to be rounded to the next integer rating before determining

the respective relative frequencies. The JSD is then computed by Eq. 6.21.

The nJSD uses the metrologic user model and works with assumptions of normality

for both, the real user feedback as well as the model-based feedback. In doing so,

the mean and standard deviation of the corresponding feedback sets are computed

and then a Monte-Carlo sample of 104 trials is created from the respective normal

distributions. In other words, the low number of repeated ratings is completed

using the normality assumption to make the JSD outcomes continuous, thus

supporting an improved ranking procedure for all model variations. To keep

the computation executable, standard deviations of less than 0.007 have to be

prohibited, i.e. lower values are fixed to this specific limit. The subsequent

discretisation is done according to the original rating scale as with the pureJSD.

The JSD is then computed by Eq. 6.21.

The JSD(b) is the generalisation of the nJSD which allows to discretise the normality-

completed feedback distributions into an arbitrary amount b of bins rather than

breaking it down to the five original bins. This further supports the continuity

of the JSD and hence the extinction of ambiguous scores. For the upcoming

evaluations, b = 50 bins and b = 200 bins will be used. The corresponding metrics

will be referred to as JSD50 and JSD200, respectively.

These metrics are gradually diverging from discreteness. At first, the feedback distribu-

tions are implemented through relative histograms applying the original rating scale S =

{1, 2, 3, 4, 5} for discretisation as it was also used in the RETRAIN study. The next ap-

proach complements the original five ratings into 104 ratings under normality assumption

while maintaining the same discretisation of S. One step further, this discretisation is re-
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placed by a new one where b equidistantly spread bins are chosen within the interval [1, 5].

This procedure guarantees that the JSD scores will not cluster into a small number of

possible values which would prevent rankings due to ambiguity.

Cohen’s Kappa: Cohen’s Kappa is often used in psychometry to determine the

inter-rater reliability, i.e. whether two (or more) independent observers (raters) do

assign similar categories to the same objects (cf. Döring and Bortz, 2016, pp. 567–568).

In doing so, the relative matching frequency p0 of both raters is compared to the

probability of a random matching pc via

κ =
p0 − pc
1− pc

. (6.22)

To compare two independent feedback realisations, the real user can be considered

as one rater and the cognition model can be considered as the second rater. Each

user and each cognition vector will associate an item (object) with specific feedback

(category) so that a kappa score can be computed for multiple rating trials. A score of

−1 ≤ κ < 0 means that random guessing performs better than using a specific cognition

vector and 0 < κ ≤ 1 indicates the degree of advantage when using a cognition vector

rather than random guessing. When computing Cohen’s Kappa, the reference through

random guessing can be chosen to be either informed or uninformed. The uninformed

guessing is based on the uniform distribution whereas the informed guessing is drawn

from the marginal distributions

P (X = i) =
k∑

j=1

P (X = i, Y = j) (6.23)

P (Y = j) =
k∑

i=1

P (X = i, Y = j) (6.24)

of the joint probability P (X = i, Y = j) that the first rater associates category i while

the second rater assigns category j. Here, k denotes the total number of available

categories. It would actually be useful to apply an informed guessing procedure since

the assignment from either the user or the cognition vector is according to a particular

non-uniform distribution. However, uniform guessing is (initially) used for simplicity.

The only effect of this simplification might be that the calculated Kappa scores are

higher because it is compared against a worse reference. If further results prove this

metric to be superior to all the other distances, informative guessing can still be
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applied to yield optimised scores. When using uninformed guessing pc simply reduces

to the Laplace probability pc = |A|/|B| where B is the set of all re-rating vectors

Rν,• = (Rν,1, . . . , Rν,5) with Rν,t ∈ {1, . . . , 5} for each rating trial t. This set has the

cardinality |B| = 55 = 3125. Since the sequence order is irrelevant in terms of the

resulting distribution, A must be defined as the set of a particular re-rating along

with all its permutations. This set has the cardinality |A| = 5! = 120. It follows that

pc = 120/3125 = 0.0384.

For the technical implementation there is the re-rating Rν,• = (Rν,1, . . . , Rν,5) on

the one side and m ≡ 0mod 5 model-based estimations e = (e1, . . . , em) on the other.

The relative frequency p0 of agreement is then computed by rounding each component

of e to an integer and then separating e into m/5 chunks of the same size as Rν,• to

check for an agreement modulo permutation. Consequently, this measure stabilises only

for large m of model-based estimations. This implementation is still very close to the

original case since it works on the untransformed user feedback.

Cohen’s D: When using hypothesis testing, any existing effect can be made significant

by increasing the sample size. However, significance gives no indication regarding the

extent of an existing effect. Therefore, psychologists also consider measures of effect size

to determine how large or small a certain effect really is. The most common measure

is Cohen’s D which considers the difference of two distribution means along with the

distribution variances. Cohen’s D is defined as

D :=
μ2 − μ1√
(σ2

1 + σ2
2)/2

(6.25)

(cf. Cohen, 1988, p. 44) and has no upper bound by definition. However, an upper bound

can be computed for the present rating scenario since a bounded rating scale is utilised

together with five re-ratings. From these conditions it follows that 1 ≤ μ1 ≤ 5 and

1 ≤ μ2 ≤ 5 for both distribution means. The Bessel-corrected standard deviation for the

user feedback is limited by 0.45 ≤ σ1 ≤ 2.19 while the lower bound for the model-based

feedback is bounded by zero as some cognition vectors might produce a set of constant

ratings. However, since this induces computational issues, the standard deviation is

set to σ2 = 0.07 for this is the largest variance that still produces constant predictors

when rounding corresponding pseudo-random numbers to full integers. Accordingly, the
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maximum value for D is given by

Dmax = max
(μ1,μ2,σ1,σ2)

μ2 − μ1√
(σ2

1 + σ2
2)/2

(6.26)

and the normalised version of Cohen’s D can be calculated qua Dn := D/Dmax. This

score is based on the assumption of normality for the user feedback and the model-based

feedback, respectively.

Monte-Carlo Impact on Classification

One problem of the initial classification algorithm using the pureJSD and Cohen’s Kappa

has been its unreliability. This was not apparent at first glance since the computation

took about several weeks and multiple repetitions have thus been out of question at

this early stage. It took months to discover that the first promising results reported

in Jasberg and Sizov (2018b) could not be reproduced. The essence of this flaw lies

within the Monte-Carlo approach that is utilised to represent probability densities. The

utilisation of pseudo-random numbers inevitably results in fluctuations when the same

task is repeated. Similarity must hence be seen as a distributed random quantity rather

than a single score. This justifies a deeper elaboration of unreliable user classification

when Monte-Carlo approaches are involved.

For analysing the effect of pseudo-random numbers on the reliability of user classifi-

cation, a reference distribution R is defined as the vector of re-ratings

R = (1, 1, 5, 5, 5) with mR = 3.4 and sR ≈ 2.19 (6.27)

together with a family of normally distributed random variables

(Cj)j=1,...,9 ∼ N (μj , σ) with μj = 1 + j · 5− 1

9
(6.28)

representing distorted copies of R. Here, σ = sR ≈ 2.19 is chosen as the common

standard deviation for the reference and its distorted copies to make the perfect match

fully dependent on the mean only. On this basis, the metric score d(R,Cj) is computed

a thousand times to get a score density for each Cj so that their intersections can be

compared.
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The results of this analysis are depicted in Fig. 6.7. The x-axis of this violin plot

represents the distribution means μj for all distorted copies Cj of R. The violin itself

is a kernel density estimation of 1000 scores d(Cj , R) that has been mirrored at the

centre line. Consequently, the y-axis shows the range of similarity scores. The red

vertical line represents the mean value mR = 3.4 of the reference R. A well-working

similarity distance should hence maximise (Cohen’s Kappa) or minimise (all other

metrics) for C6 with μ6 = 3.5. During the initial user classification, only Cohen’s Kappa

and the pureJSD had been used as a measure for similarity. All the other metrics

were added subsequently in an attempt to develop a new measure that is insensitive

to the Monte-Carlo uncertainty. The resulting distributions of Cohen’s Kappa and

the pureJSD have strong overlaps. So if the classification is repeated with otherwise

identical input data, different mean values and thus different copies Cj may be identified

as the best approximation to R.

Analogous to the error probabilities when selecting the best recommender system

(cf. Ch. 4), the same effect is likely to occur here as well. The error probabilities for

the case that Ci is a better fit than Cj according to Cohen’s Kappa or the pureJSD,

respectively, can be seen in Tab. 6.2a and Tab. 6.2b. Considering the probabilities of

choosing μ6 = 3.5 as the best fitting mean, Kappa holds high chances of error in direct

comparison with μ4, μ5, μ7, μ8 and μ9 which are all in the region of 50%. Accordingly,

a classification with this similarity score turns out to be extremely arbitrary. For the

pureJSD, there is a slightly different situation. The chance of error that μ6 = 3.5 fits

better than other means is especially high for μ7, μ8, and μ9. A classification in terms

of the pureJSD together with a Monte-Carlo approach is therefore too random to be

practicable as well.

However, there is a slightly more problematic feature of the pureJSD, namely the

strong bias towards larger means. This becomes evident in Tab. 6.2b in which the

error probabilities increase monotonically in each row. In Fig. 6.7, this bias can be

recognised as monotonically decreasing scores. Moreover, this bias is also dependent on

the standard deviation of the measured densities. In Fig. 6.8, for example, the same

analysis has been performed but with the standard deviation σ = 1.0 for each copy Cj

rather than the maximum which is considered above. One can observe a different bias

towards the middle of the scale.
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Figure 6.7: Reliability of metric scores: The similarities between the reference distribution and
each of its nine copies (with corresponding means on the x-axis) can be regarded as distributions
(represented by violin plots). The true mean of the reference is marked as a red vertical line.
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μi/μj 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1.0 – 0.90 0.93 0.96 0.97 0.99 0.98 0.98 0.96

1.5 0.76 – 0.86 0.91 0.95 0.96 0.96 0.95 0.92

2.0 0.55 0.61 – 0.80 0.88 0.91 0.92 0.87 0.81

2.5 0.33 0.39 0.50 – 0.74 0.79 0.81 0.74 0.64

3.0 0.19 0.24 0.35 0.48 – 0.67 0.70 0.61 0.49

3.5 0.15 0.19 0.28 0.40 0.52 – 0.62 0.53 0.41

4.0 0.12 0.16 0.26 0.39 0.52 0.59 – 0.51 0.39

4.5 0.20 0.25 0.35 0.49 0.61 0.67 0.69 – 0.50

5.0 0.33 0.39 0.50 0.63 0.74 0.79 0.80 0.73 –

(a) Cohen’s Kappa

μi/μj 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1.0 – 0.59 0.66 0.74 0.82 0.89 0.94 0.96 0.98

1.5 0.41 – 0.58 0.67 0.75 0.84 0.91 0.93 0.97

2.0 0.34 0.42 – 0.60 0.69 0.80 0.87 0.91 0.96

2.5 0.26 0.33 0.40 – 0.60 0.72 0.82 0.87 0.94

3.0 0.18 0.25 0.31 0.40 – 0.63 0.74 0.8 0.90

3.5 0.11 0.16 0.20 0.28 0.37 – 0.62 0.70 0.83

4.0 0.06 0.09 0.13 0.18 0.26 0.38 – 0.59 0.74

4.5 0.04 0.07 0.09 0.13 0.20 0.30 0.41 – 0.66

5.0 0.02 0.03 0.04 0.06 0.10 0.17 0.26 0.34 –

(b) pureJSD

Table 6.2: Error probabilities for the statement that Ci with expectation μi is a better fit
than Cj with expectation μj

Figure 6.8: pureJSD bias towards the scale’s midpoint when all the copies Cj share the
common standard deviation of σ = 1.0
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The same analysis shall be repeated for the standard deviation, i.e. distorted copies

are defined by

(Cj)j=1,...,9 ∼ N (μ, σj) with σj = 0.07 + j · 1.96− 0.07

9
(6.29)

with μ = mr = 3.4 as the common mean in order to make the metric score solely

dependent on the standard deviation. The similarity to R is computed for each metric

d and each copy Cj a thousand times to yield score distributions. These can be seen

in Fig. 6.9. The x-axis represents the standard deviation σj and the vertical red line

represents the standard deviation of the reference. In this analysis, yet another bias can

be recognised, i.e. Cohen’s D minimises for small standard deviation and thus chooses the

minimum σ1 along with C1 as the best fit for R. This means that only the nJSD or the

JSD50 (or JSD200 respectively) can be considered as adequate metrics. These metrics

only weaken the Monte-Carlo effect but it is still existent and might impair classification

reliability, however to a smaller extent. To fully eliminate the effects of Monte-Carlo

uncertainty, one has to freeze the so-called random seed. The random numbers used

to represent probability densities are, in fact, not random but deterministic. Based

on a previously stored start value, an algorithm generates a so-called pseudo-random

number. By explicitly setting the seed, the start value is overwritten which serves as

the basis for calculating the next pseudo-random number. If the random seed is reset

to the same value each time a set of random numbers is computed, the same samples

will always be obtained which represent a certain distribution. This in return removes

all Monte-Carlo uncertainty. For the upcoming classification, the random seed has

been set to 41 8561. Now the question arises as to whether this determination does

not nullify the randomness based on neuronal noise that should be modelled. This

would be the case if the seed is reset after every single random number. In fact, more

than 104 random numbers will be drawn at once. This will result in distributions that

are completely based on simulated neuronal noise and this is exactly what this model

is supposed to do: Explain a possible mechanism of translating neuronal noise into

feedback uncertainty. Of course, this question can also be extended: Is it realistic that

the resulting distributions are constant? It can be assumed that the state of all neurons

1The number 41 856 was chosen due to my love for aviation but also as an acknowledgement to

Prof Dr Laura Kallmeyer whose generosity supported me to attend an international conference and to

present my recent research. The hexadecimal notation of the number 41 856 is A380 which was the

aeroplane with which I flew to this conference.
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Figure 6.9: Reliability of metric scores
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involved in a repeated decision-making is never completely identical. Accordingly, even

the distributions must be subject to natural fluctuation. Then again, this fluctuation is

reduced by a higher number of Monte-Carlo trials. In consequence, the representation

of probability densities through pseudo-random numbers is just a required technical

approach. If this technical trick brings additional uncertainty to the table, then it is

legitimate to reduce it as long as the genesis of feedback distributions is still ensured.

Although it is already evident that Cohen’s D and the pureJSD are no good choices

for classification, they will nevertheless be investigated in the upcoming small-case

scenario due to comprehensiveness, i.e. to examine their properties without Monte-Carlo

uncertainty in a real use case.

6.7 Fitting User Behaviour

In the last two sections, preliminary work was done to enable user classification through

computer simulation. In Sec. 6.5, reasonable subsets of R were identified in which

the individual neuronal parameters can be located. In Sec. 6.6, possible metrics were

analysed and possible risks and solutions for classification reliability were discussed.

On this basis, these metrics can now be used to associate a cognition vector to each

feedback distribution in such a way that this vector, in conjunction with a decoder

function, optimally reproduces this distribution.

The essential simulations are computationally expensive, especially if they have to

be done for every combination of decoder function and metric. This will be clarified

by an example: If an equidistant partition with ten values is chosen for each domain

N,G,W,O of a neuronal parameter, this will result in 104 different combinations of

cognition vectors. These must be checked for each of the six metrics and four decoder

functions for all 335 user-item pairs. Therefore, 104 · 6 · 4 · 335 = 80 400 000 individual

computations have to be made. When 106 Monte-Carlo trials are used to represent

both, the model-based feedback as well as the real user feedback, the computation

ultimately involves 1.608 · 1014 float64 numbers. With 4 bytes per float, the entire data

volume that has to be generated sums up to 643 200 terabyte or rather 643.2 petabyte.

At this point it must be realised that the necessary simulations can not be calculated

in a time-efficient manner, even with intelligent calculation sequencing, buffering of

frequently occurring values and reasonable parallel computing.
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Decoder MVD WAD MLD MAD TOTAL

Runtime [in s] 2.36 0.61 788.99 785.77 1577.73

Table 6.3: Runtime analysis for each decoder function processing ten representative cognition
vectors without considering the runtime for computing a metric

Similar calculations can be made concerning the runtime. In doing so, a model-based

feedback density is computed for each decoder function processing ten representative

cognition vectors. These vectors are in particular{
(n, 20, 1, 5, 3) : n ∈ {25, 50, 75, 100, 125, 150, 170, 200, 225, 250}

}
(6.30)

and these are representative since the runtime is solely dependent on the population

size n which is altered exactly the same way as it will be done in the classification

later. The runtime results can be seen in Tab. 6.3. The total runtime of all ten vectors

sums up to 26.3 minutes. If this is extrapolated to the 104 different combinations of

cognition vectors, one yields a runtime of 18.3 days for each of the 335 user-item pairs,

resulting in a total of 16.5 years. To get this classification task done in one week (i.e. the

maximum runtime allowed on the university’s high-performance cluster HILBERT2),

one would need 874 computing nodes working in parallel which is hard to realise even

on HILBERT. Before downscaling the simulation, many attempts were made to realise

this classification without loss of information. Some of these attempts involved at least

one of the following solution approaches:

Computation Order: The feedback distributions in the form of Monte-Carlo trials

should not be recalculated for each metric. Instead, all six metrics are calculated

for each feedback distribution at once which reduces costly redundancy.

Caching: Another way to avoid redundancy is to cache frequent values, that is, to keep

them in the main memory or to store them into an extra file and retrieve them

whenever needed (instead of recalculating). This method is used for the Bayesian

decoder functions where values of the Poisson density have to be computed for

repetitive arguments and additional parameters.

2HILBERT is the high-performance cluster (HPC) maintained by the Centre for Information and

Media Technology at the University of Duesseldorf (Germany). Further information is available at

https://wiki.hhu.de/display/HPC/Wissenschaftliches+Hochleistungs-Rechnen+am+ZIM (last ac-

cessed on Jun 21, 2020).
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Parallelisation: A highly efficient way of economising runtime is to use a high-

performance cluster. For the research described in this chapter, the university’s

HILBERT HPC has been employed. These computing nodes can be virtually

assembled with a variable number of CPU cores and RAM. In addition to the

actual parallelisation by computing nodes, this also allows the use of multipro-

cessing on each node. In the beginning, 200 cores were requested per computing

node so that each core only had to compute 104/ 200 = 50 cognition vectors for

each user-item pair. However, the high number of cores led to the situation that

only one computing node was running at a time. Consequently, the 335 user-item

pairs were still calculated sequentially. Additionally, the applied usage restrictions

concerning the computing infrastructure entailed certain delays in initialising

subsequent computing nodes.

At this time, the cognition vectors were not yet optimally sorted as they are in Eq.

6.30. This is essential, however, as the runtime depends on the number of neurons

within a population. If the distribution of cognition vectors across all processes is

not optimal, some processes would terminate within minutes while others would

take days to finish. Considering the optimal runtimes in Tab. 6.3, the MVD would

have finished in 65.88 minutes but took five days in reality. Theoreticaly, the

WAD would have needed 17.03 minutes but in fact took one day to compute.

Both, the MLD and the MAD, would have taken around 15 days to compute

(exceeding runtime). In short, the improvements made so far are not yet sufficient

to realise an efficient classification.

Node/Core-Balance: In order to fulfil given technical regulations, the number of

cores has been reduced so that several nodes can run simultaneously. The optimal

core number was advised to be 20 which resulted in 500 cognition vectors for each

core. Unfortunately, none of the initialised nodes finished within the maximum

computing time when using this configuration. Further partitioning of the input

data for each node (i.e. smaller than a single user-item pair) would have been

possible but would have also caused many inconveniences to adequately prepare

the data set (i.e. proper partitioning and merging). After a better distribution

of computationally expensive cognition vectors (in terms of population size) was

achieved, this approach could be successfully implemented.
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Common Data Pool: The most effective step was indeed to improve the distribution

of computationally expensive cognition vectors. This was initially solved by a

common data pool that all processes could access simultaneously. The advantage

is that cores do not remain unused after completing the calculation of an allocated

set of cognition vectors. The expensive cognition vectors are thus processed by

all 20 cores rather than being allocated to only two or three cores which results

in exceeding the maximum runtime. This first version of a common data pool

with pointers and record locking was very cumbersome to adjust even for small

changes of the classification approach. Therefore, in the final version, the data

pool was split as usual and allocated to the individual cores, but all cognition

vectors have been shuffled before. Shuffling the data will cause expensive vectors

to be distributed equally across all cores. This solution is both practical and very

simple, and its runtime is similar to the original solution.

Random Number Generation: Fixing the random seed requires a new data struc-

ture for repeated neuronal representations. Instead of computing a single estimator

from a list of n random numbers and repeating this m times, the new implemen-

tation requires to generate m · n random numbers at once and to store them into

an (m× n) - matrix. Each row is then aggregated into an estimate, creating an

m-dimensional vector which represents the underlying probability distribution.

This eliminates m− 1 individual initialisations of the random number generator

and reduces runtime considerably.

All these solutions made the computation rather efficient in the end but still resulted

in either exceeding the maximum RAM or the maximum runtime. At this point, the

decision was made to overcome this obstacle by analysing the metric-decoder interplay

on a small but representative data record. After “learning” the optimal model settings,

these are then used for a subsequent simulation on the full RETRAIN record.

Small Case

The key to analysing the best system configuration on a small dataset is to make

this dataset as representative as possible so that the analysis and the corresponding

quality of the configuration are valid even on larger datasets. Since the neuroscientific

approach is intended to model human uncertainty, this uncertainty also becomes an

indicator of the representative quality. Hence, a small dataset is selected based on the
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Figure 6.10: Violinplot and swarmplot of non-vanishing human uncertainty within the
RETRAIN record

uncertainty (i.e. the standard deviation) of the feedback (distributions) measured in the

RETRAIN study. Figure 6.10 depicts the kernel density estimation of the non-vanishing

human uncertainty (since the present model is not designed for σ = 0) in a violin plot.

Mirroring the actual KDE along the centre axis makes smaller features of the density’s

shape more visible. In this plot, four accumulations of human uncertainty can be seen

which are in particular

A1 = (0 , 0.6] A2 = (0.6 , 1.1]

A3 = (1.1 , 1.4] A4 = (1.4 , 1.8]
(6.31)

where A3 and A4 are unified for the subsequent selection procedure due to their small

cardinalities. The goal is to select a dataset incorporating each of these accumulations.

For each of these accumulations, three feedback distributions are randomly selected

and visually compared. This process is to be repeated as long as these distributions

differ significantly by eye. The random selection is used to speed up this process by

not having to look at each user-item pair individually. For example, A1 comprises 115

distributions, A2 still has 72 distributions, and even the cardinality of A3 ∪ A4 is 26.

During this process, the set{
(26, 2), (5, 0), (59, 3), (58, 4), (24, 1), (47, 0), (27, 0), (62, 0), (24, 3)

}
(6.32)
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Figure 6.11: Representative feedback distributions constituting a small data set for classifica-
tion. Each row depicts three feedback distributions from a specific accumulation.

of user-item pairs (u, i) was chosen to represent the totality of possible distributions.

Those distributions are also shown in Fig. 6.11 in which the pairwise difference in human

uncertainty (standard deviation) can be clearly seen.

It is exactly this small dataset with which the classification is performed for all

combinations of decoder function and similarity metric. For the technical implementa-

tion, an equidistant discretisation into five numbers is applied for each parameter space

from Eq. 6.18 and Eq. 6.19, respectively. Altogether, this provides 54 = 635 different

combinations of cognition vectors. For each of these vectors, a separate node with 10

CPUs and 8 GB of RAM was requested on the HILBERT HPC for a maximum runtime

of 30 minutes (cf. Fig. 6.12). On each node, one parallel process has been created for

each of the nine user-item pairs from the small data record (cf. Fig. 6.13). An individual

neuron population was then initialised for each process which provided 104 responses

according to Eq. 6.8. These population responses were gradually transformed into

a model-based distribution by each decoder function and all similarity metrics were

computed (cf. Fig. 6.14). By this, each computing node generates nine records (one

for each user-item pair) stored on the HDD (cf. Fig. 6.13). All 5 715 files were merged

to one single data frame after all nodes had finished their computation (cf. Fig. 6.12).
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Figure 6.12: Flow chart representing the algorithm of splitting, distributing, and merging the
data across the HPC
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Figure 6.13: Flow chart representing the algorithm of processing and distributing data on a
single HPC computing node
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Figure 6.14: Flow chart representing the main classification algorithm performed by each
parallel process on each node
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The resulting data set comprises 180 cognition vectors, one for each user-item pair,

decoder function, and similarity metric. The quality of each metric-decoder combination

is analysed with regard to four criteria, namely

• uniqueness of classification results (ambiguity),

• quantifiable similarity, and

• visual similarity.

It will turn out that these indicators – when taken together – are perfectly sufficient to

determine the optimal combination of decoder function and similarity metric even with

a small data set.

The ambiguity of classification is shown in Tab. 6.4. A brief look into the metrics

column reveals that ambiguity occurs mainly with Cohen’s Kappa and Cohen’s D. These

metrics have already been shown to be insufficient for the present case, and this new

evidence serves as a supplementary indication that these metrics should not be used for

further classifications. In contrast, the metrics JSD50 and nJSD do not produce any

ambiguities, leading to advantages for the classification process. Considering the decoder

functions, it can be seen that ambiguity is not particularly related to any of these, i.e.

all decoder functions only lead to ambiguity when being combined with Cohen’s Kappa

and Cohen’s D. Therefore, no preference or rejection of a special decoder function can

be deduced at this point. With a few exceptions, all user-item pairs that are subject

to ambiguity belong to the accumulation A2 or A3 ∪A4 and thus represent a medium

to high human uncertainty. Actually, ambiguity issues would have been expected to

occur only with a small uncertainty, since uncertainty is an essential component of this

neuronal model. However, little importance is attributed to this result at this point,

as it is obvious that ambiguity only occurs with metrics whose appropriateness have

already been falsified. Nevertheless, since only a record of N = 9 has been considered,

it cannot be fully excluded that ambiguities may also occur with other metrics. The full

classification addresses this problem with an additional restriction that complies with the

brain’s least energy principle: The human brain always has to work in an energy-efficient

manner and thus it will always choose a cognition strategy that minimises the loss of

energy (cf. Niven and Laughlin, 2008, p. 1793). In the case of ambiguity, that is, when

several different cognition vectors lead to the same minimum of a metric, this principle

will favour the vector ξ = (n, g, w, o, s) inducing all n neurons to spike as sparsely as
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user item accumulation decoder metric ambiguity count

27 0 A3 ∪A4 MVD Kappa 7
58 4 A2 MVD CohenD 20
47 0 A2 MVD CohenD 20
58 4 A2 WAD Kappa 2
24 1 A2 WAD Kappa 625
47 0 A2 WAD Kappa 625
27 0 A3 ∪A4 WAD Kappa 625
62 0 A3 ∪A4 WAD Kappa 625
24 3 A3 ∪A4 WAD Kappa 625
27 0 A3 ∪A4 WAD PureJSD 2
27 0 A3 ∪A4 MLD Kappa 2
26 2 A1 MLD CohenD 2
58 4 A2 MLD CohenD 6
47 0 A2 MLD CohenD 6
27 0 A3 ∪A4 MLD CohenD 2
24 1 A2 MAD Kappa 2
47 0 A2 MAD Kappa 3
26 2 A1 MAD CohenD 2
58 4 A2 MAD CohenD 7
47 0 A2 MAD CohenD 7

Table 6.4: Total counts of classification ambiguity within the small data record. Samples with
no ambiguity have been omitted.

possible. Consequently, this vector minimises the population energy

E ∝ n · (g + o). (6.33)

The classification results were adjusted for the ambiguities using the least energy

principle so that a more sensible assessment of the classification quality is furnished.

First, a purely quantitative analysis is performed by focusing on the distributions of

similarity scores that result from the associated cognition vectors for each metric-decoder

combination. Figure 6.15 depicts these distributions in a boxplot diagram using different

groupings for a better comparability. The left boxplot is grouped by similarity metrics

and subdivided by decoder functions. It is obvious that Cohen’s Kappa performs poorly

for all decoder functions and that Cohen’s D produces excellent scores. The latter,

however, is due to the strong bias, that is, there are a lot of cognition vectors that
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Figure 6.15: Similarity scores for the best fitting cognition vectors. The left boxplot is grouped
by similarity metrics and subdivided by decoder functions. The right boxplot is grouped by
decoder functions and subdivided by similarity metrics.
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will produce too small variances that will be rated with good scores. Moreover, it is

striking that the nJSD and JSD50 (no ambiguities for both) produce excellent scores

except for the WAD. This provides an additional argument for the potential use of

these metrics in the upcoming classification. The right boxplot is grouped by decoder

functions and subdivided by similarity metrics. Remarkably, the WAD generally has

very bad scores except for Cohen’s D. The remaining three decoder functions perform

rather well. Descriptively, the MLD seems to be slightly better than the MAD and the

MVD. Overall, the combinations of MVD, MLD, and MAD together with the nJSD or

JSD50 appear to be the best decoder-metric combinations so far.

It has already been demonstrated in Sec. 6.6 that relying on numerical scores as

the only source of information can be very misguiding. Fortunately, a visual check of

the model fitting quality is possible for a small dataset. Figures 6.16 to 6.19 depict the

RETRAIN feedback distribution (green) for each user-item pair (y-axis) of the small

data set along with the model-based feedback distribution (blue) under utilisation of

a particular decoder function (separate figures). It can be seen immediately that the

WAD (cf. Fig. 6.17) and the MAD (cf. Fig. 6.19) can not be considered as working

well. However, it is most likely for the MAD that this is simply due to a wrong

prior distribution. Here the real feedback was used as a prior for constructing the

posterior distribution which was only a first idea to start with. Fortunately, subsequent

research to determine optimal prior distributions is not necessary, since the MLD

(cf. Fig. 6.18) – which is a special case of the MAD using an uninformative prior –

performs excellently. Within the paradigm of the Bayesian brain and the PPC model,

in particular, this fact can be interpreted as the absence of user beliefs or memories,

respectively, while completing the study. This interpretation is in concordance with the

use of distractors between each repetition, triggering the misinformation effect and thus

preventing memory to play a major role within the RETRAIN study. Moreover, this

interpretation is supported by the pdf-rating procedure which excluded memory effects

while giving distributions that do not significantly differ from the repeated ratings. The

superiority of the MLD along with these former findings can thus be seen as a hint

for the irrelevance of memory considering this specific cognitive task. In addition to

the MLD, the MVD is also a very good candidate (cf. Fig. 6.16) that is even much

simpler in its construction. Nevertheless, the MLD is still slightly superior which can

be seen for the user-item pairs (59, 3), (62, 0), and (24, 3). If the MLD is selected as the

decoder function, then the most appropriate metrics would be the nJSD and the JSD50.
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Figure 6.16: Visual fitting quality for the MVD along with all utilised metrics for each
user-item pair from the small data set
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Figure 6.17: Visual fitting quality for the WAD along with all utilised metrics for each
user-item pair from the small data set
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Figure 6.18: Visual fitting quality for the MLD along with all utilised metrics for each
user-item pair from the small data set
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Figure 6.19: Visual fitting quality for the MAD along with all utilised metrics for each
user-item pair from the small data set
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Figure 6.20: Number of cognition vectors with regard to their relative matching when being
determined using the re-rating and the pdf-rating

In fact, there are no significant differences between the nJSD and the JSD50 concerning

their approximation quality. Nevertheless, a decision is made in favour of the JSD50

since there is a slight descriptive superiority to be spotted for the user-item pairs (24, 1)

and (24, 3) in Fig. 6.18.

Digression: Re-Rating vs. PDF-Rating

From Tab. 3.2 it is known that the resulting feedback distributions based on the re-rating

and the pdf-rating procedure do not differ significantly in 83% of all cases. Since the

neuronal classification is dependent on these distributions, it has to produce almost

similar results in terms of cognition vectors. In this short digression, the true impact of

the measurement approach on the association of cognition vectors will be examined.

For this purpose, the same user-item pairs from the small data set are reused, but now

the pdf-rating is chosen as the basis for the respective feedback distribution. Except for

this adjustment, the classification is carried out as described above.

In a first analysis, the degree of matching is examined amongst the corresponding

cognition vectors, i.e. the relative number of their equal components. For instance, the

vectors (25, 1, 1, 0, 3) and (25, 2, 1, 5, 4) have two equal components (the first and the

third) and thus the relative matching is 2/5 = 40%. Figure 6.20 depicts the number of
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Figure 6.21: Distributions for the neuronal parameters when the cognition vectors are
computed on the re-rating set and the pdf-rating set, respectively

cognition vectors for each class of relative matching. Out of 180 cognitive vectors, only

about 25 have a match between 80% and 90%. With about 60 vectors, the modal value

can be located between 20% to 40% of relative matching. These values indicate that

the differences between cognition vectors based on different measurement approaches

are substantial. Some of the neuronal parameters match more frequently than others.

From all cognition vectors, 42.7% show equality for parameter n, 64.4% for parameter

g, 41.6% for parameter w, 37.7% for parameter o, and none of the cognition vectors

shows equality for the stimulus s. However, the stimulus s is the only parameter that

is computed in advance and passed through the classification approach from outside.

Hence, this parameter is not suitable for evaluating the impact of the applied measuring

approach on the classification. From Tab. 3.2 it can be seen that stimuli differences

are only descriptive in 83% of all cases. If the null hypothesis of equality is assumed to

hold for all non-significantly different stimuli (i.e. the maximum of possible equalities),

a maximum probability can be computed for the case that the re-rating and pdf-rating

both lead to the same cognition vector. This probability is given by

Pmax(ξre = ξpdf ) = 0.43 · 0.64 · 0.42 · 0.38 · 0.83 ≈ 0.04 (6.34)

and therefore, both measurement approaches lead to the same cognition vector with a

probability of only 4%. This is also reflected in the parameter distributions depicted in

Fig. 6.21 as these differ significantly. A KS-test with α = 0.01 confirms that equality

can be rejected for all parameter distributions except for those related to population

size. However, the same location of maxima and minima suggests that the individual

differences might not be very strong.
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Figure 6.22: Magnitude of parameter differences considering all decoder-metric combinations
for each user-item pair from the small data set

Figure 6.22 shows the distributions (violins) of these individual differences per pa-

rameter. Since the analyses are performed on roughly discrete scales, it is not practical

to use the specific parameter units (e.g. ±200 neurons, ±5 Hz, etc.). Instead, the more

general unit of ID difference is used. A value of ±1 means that the next (or the previous)

value was chosen within the parameter list. In this particular analysis, the difference of

the pdf-rating is compared using the re-rating as a reference, i.e. +1 means that the

pdf-rating will choose the next value compared to the re-rating. Overall, it can be seen

that large deviations of more than two values (next or previous) occur very seldom and

that the magnitude of these differences is rather small. The grey boxes in the violins

each represent the middle 50% of the data. This interquartile range often only reaches ±1.

In summary, different methods of measuring a feedback distribution almost certainly

lead to different classification results in terms of cognition vectors. However, these

differences tend to be rather small in their magnitude. This might be an artefact of

the rough discretisation of parameter scales. Perhaps, both parameter values would

approach a common value if a much finer discretisation is used. The following full case

will hence involve a discretisation which comprises twice as many intermediate values as

it was used for the small case. This represents a trade-off between the above arguments

and the associated computational complexity. This complexity likewise requires that

the following full case is limited exclusively to the re-rating data set.
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ambigue not ambigue
∑

constant 43 79 122

not constant 0 213 213∑
43 292 335

Table 6.5: Classification ambiguities of constant and uncertain ratings in a 2× 2 contingency
table. Both features are statistically dependent (α = 0.01).

Full Case

For the full case, the classification is performed as for the small case but with the

following changes:

• Solely the MLD and the JSD50 metric are used with 103 MC-trials.

• A larger pool of cognition vectors is generated by dividing the parameter spaces

into ten instead of just five equidistant steps. This results in 74 = 2401 cognition

vectors instead of 54 = 625.

• Due to the larger data pool a different parallelisation approach is required for the

HILBERT HPC.

If each computing node is set up with seven CPUs, the computation of all 2 401 cognition

vectors would require 2 401/7 = 343 nodes. Each node is then able to compute seven

processes in parallel and each process computes the distribution associated to a single

cognition vector along with all corresponding similarities for all 335 user-item pairs.

As for the small case, the classification quality for the full case is likewise assessed by

considering ambiguity and similarity for all model-based and real feedback distributions.

The absolute frequency of ambiguities (i.e. the number of cognition vectors that result

in the same minimum) for the JSD50 is shown in Tab. 6.5 along with the occurrence of

human uncertainty. It can be suspected that both features are statistically dependent,

especially because

P (ambigue | not constant) =
0

213
�= 43

335
= P (ambigue). (6.35)

An additional χ2 contingency test reveals that these features are indeed statistically

dependent (α = 0.01). This basically means that the occurrence of human uncertainty

substantially reduces the probability of ambiguity, i.e. the existence of human uncertainty
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maximises the quality of the neuronal classification. At first sight, two reasons seem

to suggest that this phenomenon is inherent to the model construction itself. The

first reason is that neuronal noise – which is the core element of the PPC model –

requires training data in the form of distributions and constant ratings do not meet this

requirement. This argument can be refuted since constant ratings do not necessarily

contradict the assumption of a distribution. Sizov already assumed that constant

ratings are simply the manifestation of distributions with a small variance that cannot

be resolved by the applied rating scale (cf. Sizov, 2017b, p. 872). This points to the

second reason: There may be multiple cognition vectors leading to a distribution with

small variance from which drawings will produce constant ratings. This argument can

also be refuted as it implies that constant ratings will always lead to ambiguities, i.e.

the same cognition vectors (modulo stimulus) will inevitably produce distributions with

equally small variances. However, it can be seen from Tab. 6.5 that 65% of all constant

ratings do not produce ambiguities at all. With this line of argument, the present

phenomenon can probably not be explained by the mere construction of the PPC model.

Therefore, this model is most likely capable of tracing back human uncertainty to

neuronal noise with high quality in terms of uniqueness. This provides one indication

that the explanatory PPC model is suitable to capture human uncertainty.

For the upcoming analyses, one cognition vector is chosen for each of the ambiguous

user-item pairs by minimising the energy score according to Eq. 6.33. The fitting quality

can be determined by considering the extent of similarity (JSD50) as well as the visual

matching of distributions. Both characteristics are shown in Fig. 6.23. Except for a

few outliers, all user-item pairs have a score of less than 0.025 which means a great

fit. Even the outliers do not exceed the upper bound of 0.175 which is still acceptable.

Figure 6.23 also depicts three exemplary distribution fits to provide an idea of the

classification quality. It can be rated as being excellent. These results can be seen as

a second indication that the PPC model is capable of capturing the phenomenon of

human uncertainty. It was not clear from the beginning that this theory – which had

only been reviewed in the light of perception and motor control so far – is also applicable

to decision-making. It would have also been possible that the model-based distributions

do not match the measured feedback distributions (e.g. shape, mean, variance, etc.) at

all. In this sense, the PPC model represents a remarkably accurate mapping between

measurable human uncertainty and the neuronal noise of a specific neuron population.

To investigate the plausibility of this model, the intercorrelations of its population
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Figure 6.23: Full case fitting quality using the JSD50 and three visual examples of the real
feedback distribution (red) against the model-based distribution (black)

parameters are examined as well as the neuronal response frequencies (i.e. model-based

biological implications) resulting from the best fitting cognition vectors. The pairwise

correlation of each population parameter and the uncertainty of user feedback (standard

deviation STD) is depicted by the correlation heatmap in Fig. 6.24. The behavioural

variability (STD) mainly correlates with the frequency gain g and the tuning curve width

w. The latter is not surprising, since a Gaussian is used to model the tuning curve shape

and, therefore, smaller widths automatically lead to higher response frequencies due

to normalisation. To further adjust this frequency despite a fixed width, an additional

stretching factor (frequency gain) has been introduced. The present correlation can

hence be interpreted as follows: The higher the frequency, the smaller the influence

of neuronal noise, and the lower the standard deviation for repeated decision-making.

Since attention (focus) is correlated with spiking frequency (cf. Dresler, 2011, p. 170),

this data can also be interpreted in such a way that greater attention leads to less

uncertainty in decision-making.

Further correlations worth mentioning are those for n-w and g-o. The negative

correlation between n and w is plausible, because a larger number of neurons potentially

increases the resolution when representing a scale (cf. Erdmann et al., 2015, p. 43).

To exploit this potential, the subrange of a stimulus space in which each neuron is

triggered must be smaller. On the contrary, a larger stimuli-response range induces an
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Figure 6.24: Intercorrelations between the neuronal parameters and the human uncertainty
(STD) in a heatmap

overlapping of tuning curves and the resulting resolution would again decrease. This

would constitute an energy-consuming constellation that delivers the same results as

an energy-saving alternative (e.g. fewer neurons with narrow width). At this point,

the model therefore automatically operated energy optimisation. This behaviour can

not be explained by the artificial energy score correction as this was only done for less

than 13% of the data. Considering only uncertain ratings (no energy correction at

all), the Pearson-correlation between n and w is ρ = −0.57 and shows no significant

difference. Accordingly, the PPC model acts – fully on its own – in the same way as it

is often postulated in the academic literature, namely to carry out its operations in an

energy-efficient and optimising manner (cf. Niven and Laughlin, 2008, p. 1793).

The positive correlation between g and o is a non-obvious property of the model.

Both parameters influence the frequency with which a neuron responds to a stimulus.

Nevertheless, they have a very different effect on the resulting feedback uncertainty.

The offset increases the frequency of each neuron within the population by the same
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amount, regardless of the individual dependence on a particular stimulus. This, in

turn, increases the uncertainty of a resulting feedback distribution, because neurons

whose preferred values deviate substantially from a given stimulus will respond more

strongly. In contrast, the gain amplifies neuronal responses to a greater extent if the

corresponding preferred values are similar to the given stimulus. An increase in gain

thus leads to a decrease in the uncertainty of a feedback distribution. This correlation

can hence be regarded as a constant noise-to-signal ratio for decision-making. Since

frequency is directly related to the amount of noise according to Eq. 6.7, both parameters

also constitute a degree of freedom for influencing the so-called noise correlation – a

phenomenon observed in real neuron populations (cf. Averbeck et al., 2006, p. 360).

However, the range of this particular degree of freedom is naturally limited by the present

correlation, since one parameter cannot be changed independently of the other. It is

noteworthy that all these aspects, which are unified in this particular correlation, have

indeed been found to essentially influence the quality of neuronal processing. Herrero

et al. specify that such processing is improved by enhancing firing rates, reducing firing

rate variability and noise correlations (cf. Herrero et al., 2013, p. 729). They argue

that “all of these alterations can improve the signal-to-noise ratio when decoding the

[population] activity” (cf. Herrero et al., 2013, p. 729). The present correlation reflects

these mutual dependence.

To investigate the population response in terms of spiking frequency, the neuronal

model is set up with each best fitting cognition vector and the noisy population response

is computed by Eq. 6.8 several times. The distribution of spiking rates for all user-item

pairs is depicted in Fig. 6.25. One can observe a log-norm distribution between 0 and

70 Hz and an expectation of about 8 Hz (red line). The evoked distribution shape is in

line with medical observations:

“The distribution of firing rates across the population closely resembled

a lognormal distribution [...]. Such lognormal-like distributions are also

present in various other parts of the nervous system [...] and could represent

a ubiquitous feature of neuronal networks.” (Berg, 2017, p. 3)

Furthermore, the location of the distribution, i.e. the mean and the entire range, is also

compatible with other postulates of medical research (cf. Roxin et al., 2011, p. 16220).

The configured model of the PPC hence leads to neuronal activities which are close to

those reported in real measurements.
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Figure 6.25: Theoretical neuron frequencies during decision-making using the PPC model
and the MLD as decoder function

In summary, the following statements can be made about the adequacy and plausi-

bility of the PPC model (fitted on data of human decision-making):

1. The PPC model is capable of replicating real uncertainty in decision-making with

high precision.

2. It naturally leads to plausible and medically interpretable correlations and thus to

implications about the human brain as they are reported in the field of neuroscience.

3. This model reproduces the same frequency distribution as measured in reality and

reported in the standard literature.

All these findings are strong indications that the PPC model represents a possible

neuronal explanation for the phenomenon of human uncertainty. None of these findings

was initially expected or even a logical consequence. Of course, it can be argued that

the goodness of fit is only a logical consequence since a maximum likelihood method

was used which is in general a good fitting tool. This is, however, not tenable in many

respects. Maximum likelihood estimation is a tool to adapt any parametric model
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to real data (e.g. fitting a Pareto or uniform distribution over a normally distributed

feature), but whether this model fits well on reality in the end can not be enforced

by using this tool. Besides, the maximum likelihood method has not been employed

for parameter fitting but to map a noisy population response onto a point estimator

regarding a preselected cognition vector. However, it is remarkable that this model

of population activity together with an ML-based decoder resulted into distributions

which equal the real measured feedback in terms of shape and uncertainty (i.e. equality

in all their moments). It could have also been that the real feedback distributions

cannot be reproduced at all. Also, it is not inherent in the model to autonomously

operate energy optimisation or to organise high frequencies (i.e. more attention) as a

trigger for less uncertainty in decision-making. Even the frequency distribution that is

generated for the case of decision-making fits remarkably well into the range of what

can be considered normal for the brain. At this point, it would also have been possible

that this model works well but produces frequencies in the MHz or GHz band.

Finally, a cognitive model has been developed for this thesis which is based on

theories from neuroscience (i.e. the Bayesian brain hypothesis). This model reproduces

non-vanishing human uncertainty unambiguously (i.e. quantitatively convincing) and

precisely (i.e. qualitatively convincing) whilst generating medically consistent correlations

and frequencies (i.e. plausibly convincing). Of course, these findings do not prove the

correctness of the PPC model in such a way that it can be understood as the brain’s real

implementation of cognition. Such a claim would be impossible due to the axiomatic

construction of science. This shall be illustrated by an example: Physics can be

considered as one of the oldest fields of science which gave birth to plenty of theories

and understandings about nature. Yet, none of physics’ theories actually represents

the truth. There is no point mass or elementary particle, because no one has ever

seen an electron or a vibrating string. Physics is thus a mere collection of fictitious

assumptions to simplify the complexity of nature along with built-on mathematical

descriptions of observable phenomenons that are consistent with other theories (cf.

Kircher et al., 2009, pp. 4, 31, 41, 754). The same standard must also be applied to the

PPC model developed in this thesis: It has been relied upon hypothetical assumptions

and a mathematical formulation has been used to create a theory that reproduces a

phenomenon, makes predictions which can indeed be observed in reality, and that does

not contradict previous measurements. This model hence describes a phenomenon with

full compliance of scientific standards but does not represent the absolute truth.
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At this point, however, there is sufficient evidence that a model of human uncertainty

has been found which indeed adopts an inner perspective. This was important to show,

because it demonstrates the appropriateness for this object of comparison as opposed

to purely phenomenological models. Both approaches, i.e. the inner and the outer

perspective, hold the potential to significantly impact the design of future systems.

6.8 Predicting with Neurological and Behavioural Models

To this point, a neuroscientific model has been operationalised and adapted for unreliable

decision-making. This model has been employed to translate user behaviour into

possible neuronal features. Its rationality was substantiated through various indications,

in particular by providing data-driven neurological interpretations and comparisons

with medical publications. In this section, this user model is applied to different

recommendation techniques in order to predict future uncertain user behaviour. The

prediction quality is then compared with the quality of the same techniques when these

are trained directly on a purely behavioural user model instead. An equivalence of

feedback representation can be assumed when the quality of both systems does not

differ significantly. In this case, the neuronal features can be seen to have the same

representative power to the target variable as does the real user behaviour. Using

this interpretation allows investigating whether the associated cognition vectors still

represent real user behaviour or not (classification validity). In mathematical terms:

Let

{ξ} ∼M {(μ, σ)} :⇐⇒ H0 : DM (ξ) = DM (μ, σ) not rejected (6.36)

be an equivalence relation where {ξ} is the set of assigned cognition vectors, {(μ, σ)}
the set of real user behaviour, D a distributed prediction quality distance (e.g. RMSE)

and M a specific machine learning method. This definition makes sense, as it is indeed

irrelevant for the quality of method M which of the equivalent feature spaces is finally

used. For the upcoming investigations,

FN (k) := (ξu,i)u=0,...,66
i=0,...,(k−1),(k+1),...,4

(6.37)

represents the neuronal feature matrix with omission of item k. Each instance (row)

is a single feature vector for a specific user and each column is a neuronal feature.
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For example, FN (4) looks like⎛⎜⎜⎝
n0,0 g0,0 w0,0 o0,0 s0,0 · · · n0,3 g0,3 w0,3 o0,3 s0,3

...
...

...
...

...
. . .

...
...

...
...

...

n66,0 g66,0 w66,0 o66,0 s66,0 · · · n66,3 g66,3 w66,3 o66,3 s66,3

⎞⎟⎟⎠
where the u-th row FN (4)u,• is the feature vector of user u. Analogously,

FS(k) := ((μ, σ)u,i)u=0,...,66
i=0,...,(k−1),(k+1),...,4

(6.38)

denotes the statistical feature matrix with omission of item k where the u-th row

FS(k)u,• is the feature vector of user u. For instance, FS(4) looks like⎛⎜⎜⎝
μ0,0 σ0,0 · · · μ0,3 σ0,3

...
...

. . .
...

...

μ66,0 σ66,0 · · · μ66,3 σ66,3

⎞⎟⎟⎠ .

Cosine Similarity Recommendation

Grouping users or items according to the direction of corresponding feature vectors is

very common in recommender systems engineering. This will be the first method to be

tested for feature equivalence between the neurological and the behavioural (statistical)

model. The so-called cosine similarity is defined as the cosine of the angle ϑ = �(v, w)
between two vectors v, w ∈ R

n from the same vector space (feature space). By using

the canonical definition of the inner product 〈v, w〉 of vector spaces, it follows that

SC(v, w) := cos(ϑ) =
〈v, w〉

‖v‖2 · ‖w‖2 . (6.39)

The image set of this mapping is im(SC) = [−1, 1] where SC(v, w) = 0 indicates no

similarity between v and w.

To build a collaborative filtering recommender system, the cosine similarity is used

to associate each user with a group of similar users. The mean rating is then computed

for the target item from all users within this particular similarity group. This mean

acts as a predictor for the original user. In more detail: Let k denote the item for which

a prediction is required. The item-related features are excluded from the respective

feature vectors. For each user u = 0, . . . , 66, there is a group

G(u, k) := {u∗ | SC(FN (k)u,• , FN (k)u∗,•) > 0.9 ; u �= u∗} (6.40)
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of users u∗ = 0, . . . , 66 with u �= u∗ whose absolute cosine similarity score is greater

than 0.9. The predictor πu,k for a possible rating from user u to item k is defined as

the mean

πu,k :=
1

|G(u, k)|
∑

u∗∈G(u,k)

μu∗,k (6.41)

of expectations μu∗,k from all group members’ rating distributions for item k. The

item-related prediction quality of this procedure is evaluated by

RMSEN (k) =

√√√√ 1

67

66∑
u=0

(
Fu,k − πu,k

)2 (6.42)

where Fu,k ∼ N (μu,k, σu,k) represents the real feedback distribution from user u to

item k. This procedure is analogously applied to the statistical model.

The RMSE distributions of both the behavioural (statistical) and the neuroscientific

model are shown in Fig. 6.26. It can be seen that there are almost no differences between

those distributions in terms of location and scattering. Only item k = 1 and item k = 4

have an insignificant location shift in favour of the behavioural model. The same tests

introduced and used in Sec. 3.4 are also applied at this point to execute a statistical

analysis with a significance level of α = 0.05. In particular:

• A KS-test checks whether both samples are based on the same random variable or

not. The equality of underlying random variables can not be rejected significantly.

• Welch’s t-test is used to check for the equality of means. Again, this equality can

not be rejected significantly.

• Levene’s test checks for homoscedasticity, i.e. the equality of variances. This

equality can not be rejected significantly.

Certainly, if the null hypothesis is not rejected, it must not automatically be accepted

as being true. However, these results show that potential differences are not large

enough for being detected while not exceeding a specific chance of error with respect

to the available sample size. In this light and along with a visual comparison of those

distributions in Fig. 6.26, both user models can be considered to produce nearly the

same prediction quality (with only insignificant differences). Both user models are hence

equivalent with respect to this specific collaborative filtering model for prediction.
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Figure 6.26: Item-related RMSE distributions for the CF approach using the cosine similarity

Machine Learning Regressors

Another frequently used approach for prediction is given by adaptive regression models.

Such models assume a mathematical function with variable parameters (degrees of

freedom) whose values have to be determined through optimisation against given data.

Usually, the entire data set is split into a training set and a testing set, respectively.

For the upcoming analysis, the common ratio of 70/30 is chosen, i.e. the training set

consists of 70% of the entire data record and the prediction quality is then tested on the

remaining 30%. Additionally, selecting data points for the training set is done randomly.

The entire prediction process is then repeated several times to cover quality fluctuations

due to (un)fortunate training set selection.

Let k denote the item to be predicted and let M be a particular regressor model.

The task is to find a functional dependency between a user’s feature vector FN (k)u,•
and the target variable, i.e. the mean rating μu,k for item k or its standard deviation

σu,k, respectively. To this end, a model M is fitted via

M : FN (k)u,• �→ μu,k or M : FN (k)u,• �→ σu,k (6.43)

where all feature vectors come from the training set. After all of M ’s degrees of

freedom have been determined, the predictors for the remaining test set are given

as πu,k := M(FN (k)u,•). The prediction quality of M can then be assessed through

the RMSE. This analysis involves the following regression models with their standard

implementations provided by scikit-learn (cf. Pedregosa et al., 2011):

• Support Vector Machine (SVM)

• Decision Tree (Dtree)

• ElasticNet Regression (ElasNet)
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KS-test Welch’s t-test Levene’s test
mean std mean std mean std

MLP n. rejected n. rejected n. rejected n. rejected n. rejected n. rejected
SVM n. rejected rejected n. rejected n. rejected n. rejected rejected
DTree n. rejected n. rejected n. rejected n. rejected n. rejected n. rejected
RForest n. rejected n. rejected n. rejected n. rejected n. rejected n. rejected
ElasNet n. rejected n. rejected n. rejected n. rejected n. rejected n. rejected

Table 6.6: Hypothesis testing for the RMSE distributions resulting from the neuroscientific
and the behavioural user model

with Scikit’s default settings as well as

• Random Forest (RForest) with ten underlying decision trees

• Multi Layer Perceptron (MLP) with logistic activation function and ten

hidden layers with sizes of 100, 80, 60, 50, 40, 30, 25, 20, 15, 10 neurons

and Scikit’s default settings otherwise.

Figure 6.27 depicts the RMSE distributions of all regression models in a violin plot

together with a user model partition to facilitate a visual comparison. It is notable that

all distributions based on the neuroscientific and the behavioural user model exhibit

almost complete overlaps while differing from the control group (πu,k = 1 const.).

Already with this visual comparison it is apparent that both user models are equivalent

in terms of prediction quality. The corresponding distributions for both user models

were tested to determine whether they originate from an identical underlying random

variable (KS-test), have equal expectations (Welch’s t test), and exhibit equal variances

(Levene’s test). The results are shown in Tab. 6.6. Only for the SVM with the standard

deviation as the target variable, both resulting RMSE distributions possess a significantly

different shape and variance. For all the other regressors, both user models do not

induce significant differences in prediction quality. Therefore, the neuronal features are

equivalent to the behavioural features according to Eq. 6.36 in (almost) all cases.

Interpretation

The results obtained were neither certain from the outset, nor are they even inherent in

the model. The neuroscientific feature space has got a higher dimensionality and thus
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(a) target: feedback expectation

(b) target: feedback variance

Figure 6.27: RMSE distributions for different regressor models. The green lines represent the
mean (thick line) and the σ-interval (thin lines) of a reference recommender (πu,k = 1 const.).
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provides much more degrees of freedom. Moreover, the input data has undergone a

serious transformation. Under these conditions, one would have expected medium or even

large prediction quality differences rather than equality. This equality is furthermore

prevalent in (almost) all regression models and in CF-clustering, respectively. The

high frequency of model equivalence across multiple prediction techniques is a strong

indication for a latent characteristic of the neuroscientific user model which has to

be interpreted. A possible interpretation is that the associated cognition vectors still

represent the real user behaviour instead of just being mathematical artefacts. This

being said, one may conclude that the information injection which is needed to expand

a two-dimensional into a five-dimensional space is realistic and not biasing the true

decision-making. In other words, the additional information coming from the assumed

cognitive process within the PPC model is in absolute concordance with real human

behaviour. Following this line of argument, just another strong hint has been found for

the plausibility and applicability of the PPC model for a user rating scenario.

6.9 Chapter Summary

The reason for investigating the neurological origins of human uncertainty comprises

two dimensions.

The main reason was that contemporary solution strategies (of turning human

uncertainty into possible benefits for predictive data mining) are merely statistical and

technical procedures (cf. Ch. 5). Instead of approaching this problem only phenomeno-

logically, one can also take an inner perspective which is based on human cognition

as represented in theories of psychology and neuroscience. Since such a strategy had

not yet been pursued specifically for human uncertainty in the field of predictive data

mining (at least as far as is known), there was hence a research gap that needed to be

addressed for the overarching concept of human-like systems. A comparison between

the results of the inner and the outer perspective was promising new insights about

the future design of such systems. For both models, a holistic prediction of feedback

distributions with uncertainty representation can be achieved. This is a great advantage

compared to the current research standards, where only individual draws are taken into

account and accepted as being credible. Initial results indicate that empirical models

work just as well as theoretical models with regard to specific human characteristics. On

the contrary, the integration of new human attributes can be directly implemented when
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theoretical models are used. For example, the population frequencies could be modelled

explicitly as a function of stress (cf. Vanitha and Krishnan, 2016) or fatigue (cf. Saroj

et al., 2003) since such dependencies have already been investigated in medical research.

In a purely empirical model, these correlations have to be learned again for each use

case and each human characteristic. This would generate knowledge that is only valid

in specific situations and under specific circumstances. As opposed to this, theoretical

models offer a universal theory that may be applied to all use cases by deduction. This

might be an advantage which keeps future systems simple and clear.

The secondary reason arose from the fact that doubts remained after the measurement

of human uncertainty in Ch. 3 as to whether it is indeed inherent in human beings or

merely induced by the measurement itself. Following the latter opinion may imply that

decisions are actually reliable and that uncertainty only emerges when environmental

factors change, e.g. when a rating has to be repeated several times with different

preceding items. The plausibility of this hypothesis is invalidated, since the pdf-rating

(no altered item histories) generates probability densities that do not differ significantly

from those of the re-rating (altered item histories). Even though the measurement

method can be excluded as the origin of feedback uncertainty, this is no evidence or

indication that this uncertainty is an inherent characteristic of human beings.

This question was implicitly addressed by pursuing the main goal described above.

The theory of probabilistic population codes provides a popular and adequate cognition

model from which unreliable user feedback arises naturally. Foremost, all epistemological

quality criteria that have been laid down in Sec. 6.1 are fulfilled. The model is able to

explain human uncertainty and has demonstrated a remarkable accuracy for reproducing

all uncertain feedback distributions. Due to the implementation as a user model, it

is simple to integrate into existing systems (and performs equally well compared to a

behavioural model). The parameters that have been learned from real user behaviour

thereby led to interpretations which are supported by the relevant medical literature. For

example, the frequency distribution of common neuron populations is virtually replicated

and possible parameter correlations also point to documented facts: (1) increased

attention leads to less uncertainty, (2) a population holistically employs each neuron

for information encoding including noise correlations, and (3) the system performs self-

initiated energy optimisation. This theory is also well connected with other (fundamental)

models such as tuning curve models, Poisson-like noise, agency, place cells, and cue

integration. Furthermore, neither the literature search in Sec. 6.2 nor the own research
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was able to identify internal inconsistencies at any time. The theory of probabilistic

population codes hence provides a solid basis for considering the phenomenon of

uncertainty as inherent in human beings rather than ascribing it to an unfortunate

method of measurement. It can hence be assumed that all data sets containing explicit

user feedback are probably affected by human uncertainty. Consequently, all impacts of

human uncertainty on the assessment of prediction techniques do most probably apply

in reality, albeit it often remains undiscovered for uncertainty has seldom been recorded

so far.

A supposed weakness of this model may be its transformation from a two-dimensional

into a five-dimensional vector space despite the absence of further information. This

criticism is only conjectural, as the information is obtained from the cognitive process

as represented by the tuning curve shapes, the population set-up, the distribution

of neuronal noise, and the utilised decoder function. As this thesis advocates the

development of more human-like systems, it will also part with the paradigm that only

pure quantitative data (e.g. user ratings) is considered to be valuable. Following this

line of argument rather involves not denying the possibility that the human nature or

the functioning of the brain can constitute a source of valuable information. The results

in this chapter indeed foster the interpretation that the postulated cognition process is

almost completely in harmony with human behaviour, i.e. the neuronal description of a

user is equivalent to considering the exhibited behaviour. This is a notable indication

that the information injection truly represents higher cognition and decision-making.
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The purpose of this chapter is to recapitulate the results of this thesis, to draw

conclusions for the overall picture of user data in predictive data mining, and to raise

novel ideas to produce human-like systems. Some parts of this chapter are mainly

based on my work Jasberg and Sizov (2019). In particular, Sec. 7.1 and 7.2 have been

published almost verbatim there. Moreover, Sec. 7.1 has also been published in Jasberg

and Sizov (2018a) almost verbatim. All these sections underwent contentual changes

such as the underlying storyline or the addition of the PPC concept.

The essence of this thesis is to evaluate current developments in the field of predictive

data mining, especially the predominant role of accuracy-driven research and the

subordinated role of user models and their representation of human characteristics.

Therefore, four research objectives have been formulated in Ch. 1, i.e.

A) revealing the existence of human uncertainty in a realistic use case,

B) demonstrating the impact of human uncertainty and effects of neglecting,

C) introducing methods for adequately dealing with human uncertainty,

D) substantiating a human-inherent origin and propose more human systems.
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7.1 Results and Insights

Research goals A, B, and C collectively demonstrate the importance of data quality for

the field of predictive data mining, especially for the use case of recommendation and

personalisation. In particular, there are two important factors of data reliability that

have to be considered:

1. People make decisions in dependence of their current contextual situations, that

is, users tend to give different feedback under different circumstances. A com-

prehensive research has developed on the context-dependency of user feedback

focusing on the impact of specific surroundings (cf. Hu et al., 2014; Zhao et al.,

2016, 2017). These dependencies can often be associated with constant biases (e.g.

correlations) that can be ruled out of affected data records.

2. Human decision-making is subject to some natural variability, i.e. even when a

constant situational context can be assumed, users give different feedback when

the feedback task is repeated only a few moments later. In this thesis, this

phenomenon is referred to as human uncertainty. Even if the repetition – which

can technically be interpreted as a context change as well – is omitted in order to

have the probability density directly entered instead, exactly the same uncertainty

can be observed.

The second factor is in the main scope of this dissertation. The core of this present work

is to prove the existence of human uncertainty in explicit user feedback and to report

on its impact on comparative assessments of prediction engines and personalisation

approaches. The key messages to be shared are as follows:

User feedback are distributions: Based on the latest research in the field of neu-

roscience, cognition may be based on inner distributions which are constantly

updated by a complicated generative process within the human cortex. In con-

sequence, results of human decision-making yield a certain degree of volatility

and must be seen as a distribution itself. This volatility – which is denoted

human uncertainty in our context – can be explained by the irregular release of

neuromodulators like dopamine and acetylcholine. This volatility of user feedback

has been independently discovered in a simple user study.
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Metrics of distributions become distributions themselves: Based on latest re-

search in metrology (the science of accurate measurement), the uncertainty of

quantities propagates with respect to a specific mathematical model when com-

posed quantities are computed. In a probabilistic sense, the composed quantity

is distributed by a probability density which emerges as a convolution of all

arguments’ densities. Typical approaches to determine a resulting distribution

are Monte-Carlo simulations as well as the Gaussian Error Propagation.

Every ranking is subject to an error probability: Transferred to the compara-

tive assessment of data mining approaches, the results of well-established accuracy

metrics turn out to be distributions rather than single scores. It is not unusual

that two such distributions have an intersection, i.e. there is a probability of

ranking inversions when only single draws are considered. This error is strongly

dependent on human uncertainty but also on the prediction quality. The better

two systems perform, the more they have to differ from each other in order to

enable a statistically sound ranking.

Improvements are limited: There is a special case of ranking error. When improving

a system, it is possible to achieve a specific level of accuracy, so that further

improvements must be so much better to be recognised that they lie outside the

defined range and are thus impossible to achieve. This limit is called magic barrier

and marks an offset on an accuracy metric that can not be undercut. Therefore,

this barrier represents a natural limit for the improvement of prediction systems.

Existing solutions are not satisfying: Trying to reduce uncertainty that is already

existent in data sets has not been successful since reported solutions are logically

inconsistent and origin from simply ignoring unpleasant data. Rather, one has to

start accepting the uncertain nature of user data and acknowledge this uncertainty

in related (comparative) assessments. This acceptance should be reflected within

research contributions and further efforts should be made to predict uncertainty

beforehand. This can be achieved by using adequate user models.

As already stated at the beginning, there have been certain doubts as to whether

human uncertainty is indeed human-inherent and random by nature or just produced

by the measurement procedures applied in this thesis. For this reason, a follow-up
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research was started which should address this question and simultaneously provide

hints for possible design policies concerning human-like systems. With regard to research

objective D, the following insights can be reported:

A human origin is supported by neuroscience: The model of probabilistic pop-

ulation codes is a good candidate for explaining human uncertainty by natural

noise within the nervous system. When trained on the RETRAIN record, this

model has demonstrated an astonishing accuracy for reproducing all uncertain

feedback distributions. Also, recommendation analyses foster the fact that the

postulated cognition process is completely in harmony with human behaviour, i.e.

the cognitive description of a user is equivalent to considering his demonstrated

behaviour. All deduced assumptions from this model are supported by the medical

literature that has been reviewed. The frequency distribution of gauged neuron

populations is virtually replicated and possible parameter correlations also point

to well documented facts: (1) increased concentration leads to less uncertainty,

(2) a population holistically employs each neuron for information encoding, and

(3) the system performs self-initiated energy optimisation.

This model is easy to implement into modern systems: The utilised theory was

translated into a user model, i.e. a mathematical representation of a user’s past

behaviour. In doing so, neuronal parameters are used to span a high-dimensional

feature space. Therefore, one can simply perform computations directly on this

new space and proven methods of machine learning remain unchanged. Various

techniques of machine learning have been tested using this new feature space and

computations always ran smoothly. Only the necessary pre-computation, i.e. the

user classification is time-consuming and computationally intensive.

Behavioural models perform equally well: The PPC model works well for com-

puter science and, on an epistemic level, also for theoretical neuroscience or

computational neuroscience, respectively. From the computer science perspective,

the behavioural model performs equally well, i.e. both models lead to the same

accuracy when feedback distributions are holistically predicted. This confirms all

postulates about the cognition process since the induced information injection is

coherent to reality. However, the PPC model provides no additional benefit in

terms of prediction so far when compared to a simpler model.
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Now that all the facts and insights from all previous chapters have been collected, these

can be merged and interpreted in the light of this thesis’ scopes and topics.

7.2 Interpretation

As already explained in Ch. 1, recommender systems are based on the storage of explicit

and implicit feedback in a user model as well as on machine learning algorithms that use

this user model as a learning set. The study of Enríquez et al. (2019) shows that current

research focuses almost exclusively on optimising the accuracy of machine learning

algorithms. Conversely, it can be concluded that no great importance is assigned to the

user model and explicit user feedback. Ricci et al. (2010) even describe that the user

model is often a mere collection of user feedback, which may seem very simplistic for

realistic problems. The results of this thesis show that the assessment of data quality

can indeed be of considerable relevance. The lack of reliability of (explicit) user feedback

means that the true measurand remains unknown and only tendencies can be recognised

with a particular degree of uncertainty. Any technical processing of this feedback has

been shown to propagate this uncertainty. Accordingly, an important interpretation for

the research of recommender systems is: The credibility of knowledge that is gained

about people based on their interactions with digital systems is limited.

Furthermore, the results show that the continuous improvements in accuracy through

machine learning optimisation should be questioned sensibly since it can lead to more or

less high probabilities of errors during (comparative) assessments. As explained above,

the current status quo includes a predominant role of accuracy-driven research and a

subordinated role of user models and their representation of human characteristics. This

imbalance implies that those probabilities of error cannot be evaluated at all. Accordingly,

another interpretation of this thesis’ results is: With the current orientation of research,

it may not be possible to distinguish real improvements from false improvements.

Based on the absence of plausible solutions, it can be assumed that there is no real

solution to the probabilistic nature and its inconveniences for (comparative) assessments.

This is supported by the fact that physicists still explicitly measure uncertainty and

always publish results together with a propagated uncertainty. So the solution might

be to explicitly account for uncertainty in order to avoid possible misinterpretations.

This methodology is exactly what might enrich research in the field of recommender

systems for the future. Overall, everything points to the following interpretation: All
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results presented above serve as an indication that the contemporary research about

recommender systems may require another important dimension, i.e. the credibility

evaluation of reported research findings.

So far, the results of this thesis have been interpreted for the example of recom-

mender systems, i.e. systems that predict each user’s preference for particular items and

present the most preferred items as recommendations. Against this background, what

interpretations can be derived for the entire research area of predictive data mining?

Even in this general case, according to Weiss and Indurkhya, it is always about the

prediction of a target variable based on causal or correlative relationships with other

variables from a large data pool (cf. Weiss and Indurkhya, 1998, p. 7). For the general

case of predictive data mining, Weiss and Indurkhya mention fraud detection, (online)

marketing, healthcare outcomes, and investment analysis as the most common use

cases (cf. Weiss and Indurkhya, 1998, p. 7). Surely, key variables might be present

in all these cases, which derive from human behaviour or decisions. This means that

regardless of whether the target variable itself represents human characteristics (e.g.

user preferences), data based on human behaviour, including decision-making, needs

to be considered every now and then. Consequently, these key variables are likely to

be subject to some degree of human uncertainty as well. In summary, the findings

described in this thesis indeed demonstrate that uncertainty is very likely to be existent

in any database containing implicit or explicit human feedback which impacts predictive

data mining in general. One possible example might be the prediction of terminations

inside a company based on employee satisfaction, performance ratings from superiors,

as well as other variables (e.g. number of previous promotions, number of vacation days,

etc.). In particular, employee satisfaction and performance ratings represent human

feedback that is most likely subject to uncertainty. In this case, prediction quality would

also be a distribution and possible optimisations must include a thorough probabilistic

analysis. These explanations allow the interpretation that most of the predictive data

mining is likely to be affected by the phenomena presented here since human feedback

is conceivable in many use cases.

Finally, what future perspectives do these results and interpretations unveil? In

addition to broadcasting statistical methods, a suitable solution might be to predict

uncertainty, e.g. in order to allow for a differentiation between difficult and easy variables.

Said and Bellogín (2018) has already initialised this research by using uncertainty to

classify users into easy and difficult ones. By sensibly composing learning sets with
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different fractions of simple and difficult users, the authors were able to reduce the overall

uncertainty of accuracy. The prediction of uncertainty further allows asking additional

strategic questions, e.g. how much uncertainty is one willing to accept, or whether a

planned (but not yet realised) innovation will ultimately cause enough optimisation

to be statistically sound. In this light, it makes sense to develop more complicated

user models (or data models in general). In the next section, a new perspective of

future system design will be proposed with the goal to further sensitise predictive data

mining for human beings, i.e. to better explain individual user behaviour and to stronger

account for human characteristics.

7.3 Systems with Empathy for the Human Nature

The demand for human-like systems has coined the name “systems with empathy for

the human nature” which has been frequently used in conference talks and private

communications. According to Oxfords Advanced Learner’s Dictionary, the term

empathy can be defined as “the ability to understand another person’s feelings, experience,

etc.” (Oxford University Press, nd) and can hence be understood synonym to sensitivity

or intuition for the human nature in general. The demand for systems with empathy

for the human nature epitomise an important claim: Systems of predictive data mining

should seek to further understand human beings by means of their individual psyche,

the neurological foundations of behaviour, emotional states, and life circumstances.

At this point, the question arises why such systems might be needed in the future.

Sizov elucidates that the “appropriate interpretation of collective [human] feedback

requires the development of suitable models that [...] ‘explain’ observations” (Sizov,

2017b, p. 869). However, Enríquez et al. (2019) demonstrates that the majority of

contemporary research solely reports on improving machine learning techniques, allowing

for the interpretation that the explanation of individual human beings is often reduced

to solely finding optimal weights of a machine learning model. This conclusion has also

be drawn by Sizov who states that “model components and parameters [themselves]

are often interpreted as an ‘explanation’ of observations” (Sizov, 2017b, p. 869). The

rationale for reflecting on this methodology can be summarised as follows:

“Although these systems are useful for both users and service providers,

the main downside is the limited interpretability and explainability of the
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data. Such limitations in both interpretability and explainability translate

in using data without understanding the root-cause of behaviors.” (Ferwerda

et al., nd)

This quotation addresses two points that are important for the argumentation in this

section. The first point is the usefulness of the current methodology and the fact that

algorithms of predictive data mining apparently work well. The successful use of such

algorithms on Amazon, Netflix, Spotify etc. is obvious and is not to be disproved in this

thesis. However, this thesis revealed that the true extent of prediction quality remains

unknown and that the credibility of detecting further improvements must hence be

questioned. It has been demonstrated that comparative assessments are often not as

straightforward as initially assumed and may be subject to error probabilities similar

to a coin toss. Hence, it may not be possible to distinguish real improvements from

false ones. At this point, certainty can probably only be generated if features such as

human uncertainty are explicitly taken into account, i.e. if more attention is paid to the

human being and his characteristics. The second point addresses interpretability and

explainability, which according to Ferwerda et al. (nd) does not exist in the described

methodology and thus, the true reason for behaviour may not be identified. This

assertion is supported by the research of Sizov who was able to prove by hypothesis

testing on a data set with collected uncertainty information that a “considerable fraction

of users exhibits some (unfitting) behaviour that contradicts the [tuned] model” (Sizov,

2017b, p. 870). This is an important signal that a deeper understanding of the human

being itself should be sought.

The main question is how such systems need to be designed in order to better

explain human behaviour. A proposal is made by Ferwerda et al. who summarise that

“recent work has thus started to adopt a more theory-driven approach by

including psychological theories and models to improve personalized systems.

These systems take advantage of psychological theories/models to explain

and predict behaviors of users, and allow for a deeper understanding of

users’ behavior, preferences, and needs, which in turn also lead to more

generalizable results.” (Ferwerda et al., nd)

This idea was applied in this thesis to cover the phenomenon of human uncertainty.

Respective prototypes (i.e. proofs-of-concept) have been developed using two disparate

approaches, namely:
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• a psychological or behavioural model based on additional observation of the

particular human characteristic that is in scope. In this thesis, the mean and

variance was used to represent a user’s feedback.

• a theoretical neuroscientific model based on the theory of probabilistic population

codes that transforms a user’s feedback distribution into possible underlying

neuronal states of this user.

Both systems allow for a holistic prediction of feedback distributions with uncertainty

representation. This is a major advantage to the current research standards in which

only single draws are considered and assumed to be absolutely credible. The results

demonstrate that both approaches fulfil their tasks of representing and predicting

human uncertainty with equal quality. In terms of runtime and resource efficiency, the

behavioural model has proven to be more useful for fast computations. However, the

theoretical model has been implemented in this thesis for the first time and there is still

an enormous potential for technical improvement. In fact, not all technical possibilities

have been used to increase efficiency since the focus has clearly been on the epistemic

nature of this model. Nevertheless, the very first results show that empirical models for

particular human characteristics perform just as well as theoretical ones. In contrast, the

integration of new human variables can be implemented directly when using theoretical

models. For example, the population frequencies could be modelled explicitly as a

function of stress (cf. Vanitha and Krishnan, 2016) or fatigue (cf. Saroj et al., 2003)

since such dependencies have already been investigated in medical research. In a purely

empirical behaviourist model, these correlations need to be re-learned for each use case

(e.g. ratings, skipped songs, click behaviour, etc.) and every human characteristic. One

thus receives a collection of knowledge that is valid only in special situations and under

specific circumstances. In contrast, theoretical models offer a universal theory that can

be applied to all use cases by deduction. The selection of a particular situation (stress

level, fatigue, emotional state, etc.) would determine initial parameter settings of this

model which are then tuned by considering the behaviour of all users considered. This

might be an advantage that keeps future systems simple and clear.

The final question regarding systems with empathy for the human nature is how they

might look like in the near future and what obstacles need to be overcome. As a matter

of fact, the phenomenon of human uncertainty is just one single feature taken from a

plethora of human characteristics. Yet another good example for a human characteristic
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impacting predictive data mining is the fact that “different users tend to have different

internal scales” (Koren and Sill, 2011, p. 117) leading to the phenomenon that “one user

can take ‘3 stars’ as similar to ‘4 stars’, while another user strongly relates ‘3 stars’ to

low quality, being similar to ‘1-2 stars’ ” (Koren and Sill, 2011, p. 117). This ultimately

challenges the validity of numerical user feedback and restrains the comparability. Given

the difference between prediction and subsequent user feedback, aggregating these

discrepancies from different users may not be appropriate because the users involved

may perceive them differently. This example demonstrates that there are still human

characteristics waiting to be found that might be of importance in future predictive data

mining. Yet, these features might be neither obvious nor easy to find, and knowledge

about their implications and manifestations has to be built eventually. Despite these

inherent challenges, this can still be an open field of undiscovered treasures. Future

systems with empathy for the human nature could possibly take into account more of

these psychological and neuronal features as well as social and ambient factors. The

possibilities for capturing psycho-social, ambient, and even neuronal features already

exist nowadays: Let’s think about the ever-increasing amounts of data through mobile

devices and the Internet of Things (useful for geotagging), or let’s think of fitness tracker

(useful for stress detection) or even neurofeedback meditation via mobile apps where

EEG signals are measured and evaluated to tell a user about the individual degree of

relaxation. Using this data in terms of empathy for the human nature may require

new ideas for its implementation including models that explain human behaviour in

the light of this information. This involves an interdisciplinary collaboration between

neuroscience, psychology, applied computer science, and applied mathematics.

Regarding the state of research on systems with empathy for the human nature,

it can be noted that the first steps towards this direction have already been taken.

At this point, the preliminary work of many authors (elaborating on data quality in

recommender systems) would have to be mentioned once again (see Ch. 2). These

(phenomenological) contributions – and future contributions as well – only need to

be consolidated with a view to developing new systems with empathy for the human

nature. This thesis presents a possible way to achieve this consolidation and to design

respective systems by transferring neural theories of cognition and mind into the user

model itself. Based on the findings of Enríquez et al. (2019), it can be said that the

research community advocating the introduction of such mindsets and methodologies

is still too small and disproportionate to the mainstream (conducting accuracy-driven
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optimisation of machine learning). It would be desirable that more researchers consider

adopting an additional focus on explaining the individual user in the light of human

nature. After all, although the first steps in this direction have been taken, there is

certainly still a lot of research to be done.

7.4 Recommendations for Further Research

The recommendations for further research basically comprise two dimensions: On the

one hand, they are intended to show ways to overcome the limitations of the research

conducted in this dissertation. On the other hand, they aim to present possibilities of

how systems with empathy for the human nature can be further promoted. Therefore,

this section is divided into two parts. The first part focuses on this dissertation and

describes new research questions that might arise from it (local recommendations).

The second part considers the dissertation itself only as a part of a larger project and

describes the possible exploration of this big picture (global recommendations).

Local Recommendations

Like any research, the work presented in this dissertation has certain limitations. These

will be addressed thematically and ideas for further research will be derived therefrom.

First and foremost, the RETRAIN study was conducted within the DACH countries

and is thus limited to a German-speaking cultural area. It is hence unclear whether

there are cultural or location-dependent differences in human uncertainty and whether

the measured uncertainty is indeed indicative for international data sets. A total of

67 users participated in the RETRAIN study and human uncertainty was measured

for five items so that a total of 335 user-item pairs are available. This number of

observations is rather small and the results of this study are therefore only indicative.

This mostly affects the share of uncertain user ratings within the overall data set as

well as the distribution of human uncertainty. Nonetheless, the analysis of comparative

assessments is not affected, as this was theoretically derived for an unspecified number

of observations. This data set is also too small for a phenomenological analysis of

uncertainty effects on real recommender systems or basic machine learning techniques.

Typical data sets for such research contain several million observations. For example,

the latest MovieLens data set currently contains “25 million ratings and one million tag
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applications applied to 62,000 movies by 162,000 users” (GroupLens, nd). Even the

oldest and smallest record of MovieLens from 1998 still has “100,000 ratings from 1000

users on 1700 movies” (GroupLens, nd). The Yahoo! R2 data set even contains “over 717

million ratings of 136 thousand songs given by 1.8 million users of Yahoo! Music services”

(Yahoo! Research, nd). It is hence essential for further research that the existing data

set is extended. Data sizes in the order of MovieLens and Yahoo! is beyond the reach of

an online experiment, but a data size of 100k ratings can be considered as realistic. The

RETRAIN study gathered ratings with uncertainty information for 335 user-item pairs

within one week and cost about 400 EUR in total. An extrapolation shows that more

than 1300 ratings could be obtained in a month and the expected cost of 1600 EUR

is still acceptable for a university chair. If this study were carried out in 77 countries

(about 40% of all countries) and the costs were borne by one chair in each country, a

common data set with 100k ratings could be created and used for international research.

The pdf-rating procedure could help to reduce the effort and might enable the gathering

of uncertainty information for more user-item pairs in finite time. Such a data set would

be very valuable for studying the impact of human uncertainty on recommendation

and machine learning in general. Results obtained from such data can be considered as

representative rather than indicative. Furthermore, the exploration of local and cultural

differences can – aside from the epistemic value – be used to fine-tune future systems.

Concerning the measurement of human uncertainty, it must be said that the existing

methods do not suffice for multiple reasons: For the re-rating procedure, it has already

been proven that users quickly get tired and no longer provide meaningful feedback (cf.

Sizov, 2017a, p. 897), so that four to five re-ratings mark the maximum at which this pro-

cedure measures validly. With only five observations per user-item pair, the confidence

interval for the mean and the standard deviation of each feedback distribution is too

large. For this reason, deduced statements are only indicative, e.g. for the comparative

assessment of recommender systems. The pdf-rating procedure is perceived as being

too complicated and the currently used transformation to determine the statistics for

a feedback distribution also induces too large confidence intervals. Furthermore, the

reliability of this method has not yet been tested, which is imperative to catch up on.

This measurement method hence needs to be explored in more detail and also needs

to be provided with an improved (i.e. a simpler) user interface. Another aspect that

belongs to the measurement methods is the employed feedback scale. The RETRAIN

study used a 5-star scale as it is used by Amazon. Other scales such as those with two,
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three, or ten response options have not yet been investigated. Consequently, a possible

dependence between the employed feedback scale and human uncertainty is currently

unclear and needs further investigation. Therefore, a follow-up study is required which

should not only include repeated pdf-ratings but also a combination of re-ratings and

pdf-ratings for different scales and with different user interfaces. Besides, only explicit

user feedback was addressed in this thesis. However, implicit user feedback is probably

subject to missing reliability as well. For example, Mao et al. (2019) examined the

reliability of user click behaviour on a page with search results and inferred the induced

uncertainty of item-relevance estimation. Based on the repeated simulation of user

clicks, the authors concluded that

“user clicks carry implicit relevance feedback that is valuable for improving

the ranking performance of Web search engines. However, the click signal

is noisy and affected by different kinds of behavioral biases [...], making it

systematically different from true relevance.” (Mao et al., 2019, p. 125)

Indeed, by using Bayesian click models, it is possible to determine the uncertainty of

relevance estimation that originates from unreliable user clicks (cf. Mao et al., 2019,

p. 126). At this point, Mao et al. have provided the proof-of-concept that implicit user

feedback must also be represented by distributions. The authors also provided approaches

to derive such distributions from observed user behaviour. Further research may take

this result as a starting point and aim to combine different kinds of implicit feedback

with given explicit feedback in the sense of Bayesian cue integration. In other words,

implicit and explicit feedbacks may be aggregated to a general preference probability

distribution. The advantage of such modelling is that Bayesian cue integration prefers

more precise information, i.e. the narrowest distribution. Consequently, it may be

possible to reduce the variance of a resulting preference distribution through different

information cues which then positively affects, for example, the comparative assessment

of future systems.

Another point relates to human uncertainty itself. By comparing the re-rating

procedure and pdf-rating procedure, a methodological induction of this phenomenon

could be excluded on an indicative level. Likewise, the existence of an adequate neuronal

model for uncertain decision-making provides further indication that this phenomenon

is indeed human-inherent. New experiments could help to overcome the indicative

character of these findings and provide more clarity concerning the existence and the
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extent of human uncertainty. To this end, a collaboration with a neurological or

psychological research institute would be particularly beneficial. This is because the act

of memorising new information is located in the human hippocampus (cf. Birbaumer

and Schmidt, 2018, p. 653) and, therefore, patients with lesions in this brain area cannot

transfer new information into long-term memory (cf. Speckmann et al., 2019, p. 277).

Having access to such participants for further study may allow to finally exclude the

assumption that human uncertainty originates from a changed item history during

repeated evaluations. In other words, each repeated item presentation would be like

rating this item for the very first time. In practice, having access to such patients

is not even necessary at all. Karnath and Thier (2012) describe that in transcranial

magnetic stimulation (TMS) a highly focused magnetic field can be generated near

the skull, which induces a small current at the brain surface (cf. Karnath and Thier,

2012, pp. 26–27). This technique allows to create so-called transient (i.e. temporary)

virtual lesions and is already in use for neuroscientific research (cf. Karnath and Thier,

2012, p. 27). From an ethical point of view, this technique is completely acceptable as it

is non-invasive and virtually harmless: “TMS can be employed in almost any healthy

volunteer who meets a few basic health-related criteria” (Glimcher and Fehr, 2014, p. 95).

Moreover, TMS has already been shown to interfere with memory functions: Siebner

and Ziemann describe that repeated TMS treatment (rTMS) can prevent the formation

of memory in the mouse model for about 30 minutes (cf. Siebner and Ziemann, 2007,

p. 390). By completely excluding memory effects from a repeated rating task, it would

additionally be possible to discover the true extent of uncertainty (which might be

larger than in the RETRAIN study) and it would certainly allow for more rating trials

since fatigue and boredom would not arise. This may allow testing the assumption of

normality for the feedback distributions using a larger number of observations.

From the field of predictive data mining, the research of this thesis focused mainly

on recommender systems along with their comparative assessment. Given a larger data

record, one could also explore possible effects on basic machine learning techniques. This

is an important step since these techniques can be found in almost every application

of predictive data mining nowadays. Such research probably furnishes more general

conclusions for a broader spectrum of use cases. When focusing on recommendations,

one basically considers very similar variables, i.e. user ratings are inferred from other

user ratings. However, how does human uncertainty affect other use cases in which

variables are causally related but not quite similar? Such an example may be the
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prediction of termination probabilities within a company based on multiple variables

including human estimations. Let’s assume that employee satisfaction measured by an

online questionnaire is taken into account. This information is probably uncertain, but

its impact on the uncertainty of a predicted termination probability remains unclear.

One variable’s value certainly may indicate the extent of the other variable through

correlation, but this correlation may not be one-to-one. Mathematically speaking,

there is a downstream random variable which maps the uncertain employee satisfaction

somehow to the interval [0, 1] of termination probability. Accordingly, the uncertainty

propagation of a still unknown mathematical model must be taken into account. Such

transfer effects do not exist in the case of recommender systems when variables of the

same kind are considered. It becomes even more complicated when other variables

are added (which is a more realistic case), e.g. the evaluation by a supervisor along

with non-uncertain variables such as ‘holidays used per year’ and ‘overtime per year’.

Although the effects of all these variables on the probability of termination can be

presumed, the aggregation is not obvious (which is why machine learning is used for

such tasks). However, the uncertainty propagation is not obvious either so that the

existing theory needs a further extension. Moreover, rating a film trailer represents a

relatively unimportant decision that may not require much reflection. It is still unknown

whether and to what extent human uncertainty occurs in more important decisions, e.g.

in choosing a partner on Parship where matching algorithms are used based on an online

questionnaire (cf. PE Digital GmbH, nd). Such an experiment would constitute the

first step towards a holistic view of human uncertainty for a broader range of predictive

data mining.

Regarding the model of probabilistic population codes (PPC), further research is

required on runtime and resource efficiency. More efficient algorithms may allow using a

finer discretisation of neuronal parameter spaces and support resolving smaller differences

of best-fitting cognition vectors. This may improve clustering analyses providing new

user insights and better prediction performance. Another starting point for further

research focuses on the additivity of agents in terms of Bayesian cue integration. This

can be used to examine the aggregation of sub-ratings for a particular item. For

example, one could collect ratings for usefulness, workmanship, ergonomics, durability,

and delivery time. If the participants additionally specify how important they perceive

each of these sub-aspects, this can be used to determine how a unifying feedback density

may constitute as a linear combination of all sub-densities. The so-gained knowledge
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may allow converting a given user feedback into possible sub-feedbacks in a way that is

plausible in the light of neuroscience, i.e. that presumably reflects real cognition. This

may help to identify alternative user clusters, e.g. users who appreciate ergonomics

or those who prefer durability. Such results may further support revealing new user

insights. Further research may also focus on the integration of stress, fatigue, and

other tuning curve families into the PPC model, immediately followed by reassessing a

possible superiority to the behavioural model. Up to this point, only bell-shaped tuning

curves have been considered although sigmoid-shaped tuning curves are also discussed

in neuroscience literature (cf. Dayan and Abbott, 2001, p. 15 of Ch. 1). During the

research for this thesis, sigmoid-shaped tuning curves have also been implemented for

a while. The results demonstrated that the population activity forms monotonically

increasing or decreasing curves, even with asymptotes depending on the particular

configuration qua cognition vector. Such curves are, for example, used in utility theory

(cf. Glimcher and Fehr, 2014, pp. 5–6). Moreover, specific configurations provoke the

population response to take the form of a complete sigmoid-function, which is often

employed in prospect theory (cf. Glimcher and Fehr, 2014, pp. 113 and 119). Both

of these theories are basic to decision-making from the perspective of economics (cf.

Glimcher and Fehr, 2014, pp. 113 and 119). Since PPCs come into question as a model

of decision-making, the additional ability for physiologically representing functions for

utility and value would be a remarkable coincidence. The applicability of the PPC model

to these use cases deserves further investigation. In doing so, the principle used in this

dissertation can be transferred: The curves for utility and value can be determined for a

particular decision-maker through experiments. These can then be mapped onto possible

cognition vectors using the same simulation as described in Ch. 6 while the neurological

implications can be compared with findings reported in the scientific literature. As this

model was recently proven to work well for explaining perception and motor control,

the findings in this thesis revealed an even broader applicability. Everything that is

known about this theory to this point indicates that it could perhaps be a universal

theory for the human brain, i.e. a single mechanism that acts as a solution strategy for

all brain tasks. It is therefore imperative to investigate this assumption through the

further research described above (but not exclusively).
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Global Recommendations

The global recommendations are intended to describe a possible exploration of the

broader field beyond the research done in this dissertation. The contextual framework of

this dissertation is given by what is called systems with empathy for the human nature,

i.e. systems that address the peculiarities of human beings. Human uncertainty has

only been one example of this. Apart from this topic, there is certainly undiscovered

knowledge that can yet make a huge contribution to future systems with empathy for

the human nature. For example, Koren and Sill mention the phenomenon of different

individual interpretations of scales (cf. Koren and Sill, 2011, p. 117).

The final question is: Which other human peculiarities and phenomena still exist

and how to discover them along with their impact on predictive data mining? This

was accomplished in this thesis by the transfer of knowledge from different scientific

disciplines, in particular by transferring the concept of measurement uncertainty from

metrology and physics to the subject of measuring user feedback. The same principle

can surely be applied to find additional aspects of human nature. For this reason, a

global recommendation for further research can only be to establish an interdisciplinary

collaboration in the form of a research alliance. Based on previous experience, especially

with regard to the study of literature on the topic of this dissertation, a cooperation of

the following disciplines appears to be very fruitful:

• computer science

• neuroscience

• computational neuroscience

• psychology

• psychometrics

• economics

For example, a similar association exists between economics, psychology, and neu-

roscience since the late 1990s and gave birth to the new field of neuroeconomics (cf.

Glimcher and Fehr, 2014, pp. xii–xiii). It is reported that this “converging group [...]

quickly generated a set of meetings and conferences that fostered a growing sense of

interdisciplinary collaboration” (Glimcher and Fehr, 2014, p. xiii) which has induced

a significant benefit for all these disciplines to this day (cf. Glimcher and Fehr, 2014,

p. xxvii). If a consolidation of all these different concepts of decision-making turned

out to be successful in creating synergy effects, this can surely be extended to decision-

making while interacting with information systems. The beginning can be very similar
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to that of neuroeconomics. By announcing special issues and organising conferences, a

community is gradually being established. In this community, parties with common

interests and goals can coalesce and form research alliances. The question is how such a

research alliance, particularly related to predictive data mining, can be equally successful.

Such an undertaking can be realised, e.g. in the form of a funded project on the topic

“systems with empathy for the human nature”. The results of this dissertation together

with the results of Sizov (2017a,b) can provide a good basis to indicate the necessity and

relevance of such a funded project. If there is a chair for each of the above-mentioned

disciplines, each of which is granted two doctoral positions for a period of six years,

intensive interdisciplinary research is ensured.

In doing so, which factors of success would play a major role? First of all, a

common basis for research must be created. This requires the elaboration of possible

research intersections and the rigorous construction of transitions. Especially for the

case under consideration in this thesis, this is certainly possible as the intersections are

sufficiently pronounced: One possible transition between predictive data mining and

(computational) neuroscience has already been emphasised in Ch. 6. In addition, the

possibility of modelling utility and value was highlighted as a way to integrate the basic

theories of economics. However, economics itself offers numerous experimental proofs

that people make decisions violating rationality under specific circumstances (Glimcher

and Fehr, 2014, p. 109). Such experimental detection of behavioural peculiarities is,

among other topics, the core subject of psychology and psychometrics. Altogether,

each of the mentioned fields offers a sufficient number of theories to be integrated

into predictive data mining, but there are also many different data sets that can be

consolidated in this framework. Another factor for success, which also supports the first

one, is to develop a common understanding of science and methodology. This step is

not trivial and requires tolerance, respect, trust as well as being open-minded. These

conditions are not always met. For example, the first alliances of economics, psychology,

and neuroscience faced the problem that this kind of fusion

“was controversial within their parent disciplines. Many neurobiologists

outside the emerging neuroeconomic community argued that the complex

normative models of economics would be of little value for understanding

the behavior of real humans and animals. Many economists [...] argued that

algorithmic-level studies of decision making were unlikely to improve the
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predictive power of the revealed preference approach.” (Glimcher and Fehr,

2014, p. xxii)

For this reason, it is beneficial for such alliances to emerge from networking activities

at conferences with an interdisciplinary focus. In this way, an open mind is more likely

to be found and the common goals are probably shared throughout the participants.

This definition of common goals represents yet another factor of success. On this

basis, research plans can be developed involving scheduled reports and periodic research

colloquia to which representatives of other scientific disciplines (e.g. physics) may also

be invited. This regular communication is particularly important with regard to the

early identification of further research opportunities across individual disciplines. For

example, research results in the field of psychology can open up completely new research

perspectives in the field of predictive data mining. In such research arrangements,

consolidation of resources may also be organised to go beyond the sharing of data

records, e.g. by granting access to a high-performance cluster or TMS equipment for other

departments (depending on legal regulations). Finally, how can those collaborations

furnish systems with empathy for the human nature? In Glimcher and Fehr (2014), this

question has implicitly been answered for the subject of computational psychology:

“What are the steps of computational modeling? The first step is to take

a conceptual theoretical framework, and reformulate its assumptions into a

more rigorous mathematical or computer language formalism. But often the

conceptual theory is insufficient or too weak to completely specify a model,

or it is missing important details. In this case, the second step is to make

additional detailed assumptions [...] which complete the model in order to

generate precise quantitative predictions. [...] Computational models almost

always contain parameters whose values are initially unknown, and the third

step in computational modeling is to estimate these parameter values from

some of the observed data. The fourth step is to compare the predictions

of competing models with respect to their ability to explain the empirical

results to determine which model provides a better representation of the

cognitive/neural system that we are trying to represent. The last step is often

to start over by reformulating the theoretical framework and constructing

new models in light of the feedback obtained from new experimental results.”

(Glimcher and Fehr, 2014, p. 50)
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This description perfectly reflects the procedure of transforming the theory of prob-

abilistic population codes into a user model for recommender systems as previously

presented. Therefore, these steps constitute a proven concept for application when

further peculiarities of human behaviour need to be transformed as well.

This new dimension of user knowledge is substantially different from solely being

able to infer likes. It may be possible to create user models with stored personality

structures, thinking patterns, cognitive dispositions, and emotional tendencies. The

possible applications are manifold and especially those use cases will benefit where

knowledge about the human being itself is essential (e.g. dating services, business

recruiting, insurance pricing, employment service, etc.). Further research in this area

can therefore only be strongly recommended.
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